【題目】已知函數(shù),對于函數(shù)有下述四個結論:

①函數(shù)在其定義域上為增函數(shù);

②對于任意的,都有成立;

有且僅有兩個零點;

④若在點處的切線也是的切線,則必是零點.

其中所有正確的結論序號是(

A.①②③B.①②C.②③④D.②③

【答案】C

【解析】

利用特殊值法可判斷①的正誤;推導出當,從而可判斷②的正誤;利用導數(shù)研究函數(shù)的單調性,結合零點存在定理可判斷③的正誤;利用導數(shù)的幾何意義得出等式,進而可判斷④的正誤.綜合可得出結論.

,

所以,函數(shù)在其定義域上不是增函數(shù),①錯;

∵當時,則,因此成立,②對;

函數(shù)的定義域為,且,

所以,函數(shù)在區(qū)間上均為增函數(shù),

,

,即函數(shù)在區(qū)間上有且僅有個零點.

,,

所以,函數(shù)區(qū)間上有且僅有個零點.

因此,函數(shù)有且僅有兩個零點,③對;

在點處的切線的方程

也是的切線,設其切點為,則的斜率,

從而直線的斜率,,即切點為,

又點上,,

必是函數(shù)的零點,④對.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形ABCD中(如圖1),,,,,,點ECD上,且,將沿AE折起,使得平面平面ABCE(如圖2),GAE中點.

(Ⅰ)求四棱錐的體積;

(Ⅱ)在線段BD上是否存在點P,使得平面ADE?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,,,..,,,,,的前n項和為,正整數(shù),滿足:①,②是滿足不等式的最小正整數(shù),則

A.6182B.6183C.6184D.6185

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,D,E分別是的中點.

(1)求證:DE∥平面

(2)若,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐的底面是矩形,底面,且,設E、FG分別為PC、BC、CD的中點,HEG的中點,如圖.

1)求證:平面;

2)求直線FH與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為準備參加市運動會,對本校甲、乙兩個田徑隊中名跳高運動員進行了測試,并用莖葉圖表示出本次測試人的跳高成績(單位:.跳高成績在以上(包括)定義為“合格”,成績在以下(不包括)定義為“不合格”.鑒于乙隊組隊晚,跳高成績相對較弱,為激勵乙隊隊隊,學校決定只有乙隊中“合格”者才能參加市運動會開幕式旗林隊.

1)求甲隊隊員跳高成績的中位數(shù);

2)如果用分層抽樣的方法從甲、乙兩隊所有的運動員中共抽取人,則人中“合格”與“不合格”的人數(shù)各為多少;

3)若從所有“合格”運動員中選取名,用表示所選運動員中能參加市運動會開幕式旗林隊的人數(shù),試求的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論上的單調性;

(Ⅱ)設,若的最大值為0,求的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)fx)=(sinx+cosx2cos2x).

1)求函數(shù)fx)的最小正周期;

2)已知△ABC的內角A,B,C的對邊分別為ab,c,若,且a2,求△ABC的面積.

查看答案和解析>>

同步練習冊答案