【題目】為了調(diào)查煤礦公司員工的飲食習慣與月收入之間的關系,隨機抽取了30名員工,并制作了這30人的月平均收入的頻率分布直方圖和飲食指數(shù)表(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主).其中月收入4000元以上員工中有11人飲食指數(shù)高于70.

20

21

21

25

32

33

36

37

42

43

44

45

45

58

58

59

61

66

74

75

76

77

77

78

78

82

83

85

86

90

(Ⅰ)是否有95%的把握認為飲食習慣與月收入有關系?若有請說明理由,若沒有,說明理由并分析原因;

(Ⅱ)以樣本中的頻率作為概率,從該公司所有主食蔬菜的員工中隨機抽取3人,這3人中月收入4000元以上的人數(shù)為,求的分布列與期望;

(Ⅲ)經(jīng)調(diào)查該煤礦公司若干戶家庭的年收入(萬元)和年飲食支出(萬元)具有線性相關關系,并得到關于的回歸直線方程:.若該公司一個員工與其妻子的月收入恰好都為這30人的月平均收入(該家庭只有兩人收入),估計該家庭的年飲食支出費用.

附:

.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(Ⅰ)有;(Ⅱ);(Ⅲ)3.0552萬元.

【解析】

(Ⅰ)列出列聯(lián)表,計算,得出結論(Ⅱ)從公司所有主食蔬菜中的員工中任選1人, 該人月收入4000元以上的概率,抽取的人數(shù)服從二項分布;(Ⅲ)根據(jù)頻率分布直方圖每人月入百元,計算該家庭年收入,代入線性回歸方程計算即可.

(Ⅰ)根據(jù)頻率分布直方圖,月收入4000元以上的人數(shù),

所以完成下列列聯(lián)表如下:

月收入4000元以下

月收入4000元以上

合計

主食蔬菜

8

10

18

主食肉類

1

11

12

合計

9

21

30

所以,故有95%的把握認為飲食習慣與月收入有關系.

(Ⅱ)從公司所有主食蔬菜中的員工中任選1人, 該人月收入4000元以上的概率.

可取0,1,2,3.

所以.

的分布列為

0

1

2

3

,

.

(Ⅲ)根據(jù)頻率分布直方圖,(百元).

所以(萬元),故該家庭的年飲食支出費用約為3.0552萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.某班位同學從文學、經(jīng)濟和科技三類不同的圖書中任選一類,不同的結果共有種;

B.甲乙兩人獨立地解題,已知各人能解出的概率分別是,則題被解出的概率是;

C.某校名教師的職稱分布情況如下:高級占比,中級占比,初級占比,現(xiàn)從中抽取名教師做樣本,若采用分層抽樣方法,則高級教師應抽取人;

D.兩位男生和兩位女生隨機排成一列,則兩位女生不相鄰的概率是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))

(Ⅰ)試討論函數(shù)的導函數(shù)的極值;

(Ⅱ)若為自然對數(shù)的底數(shù)),恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)新高考改革方案,某地高考由文理分科考試變?yōu)?/span>“3+3”模式考試.某學校為了解高一年425名學生選課情況,在高一年下學期進行模擬選課,統(tǒng)計得到選課組合排名前4種如下表所示,其中物理、化學、生物為理科,政治、歷史、地理為文科,“√”表示選擇該科,“×”表示未選擇該科,根據(jù)統(tǒng)計數(shù)據(jù),下列判斷錯誤的是

學科

人數(shù)

物理

化學

生物

政治

歷史

地理

124

×

×

×

101

×

×

×

86

×

×

×

74

×

×

×

A. 4種組合中,選擇生物學科的學生更傾向選擇兩理一文組合

B. 4種組合中,選擇兩理一文的人數(shù)多于選擇兩文一理的人數(shù)

C. 整個高一年段,選擇地理學科的人數(shù)多于選擇其他任一學科的人數(shù)

D. 整個高一年段,選擇物理學科的人數(shù)多于選擇生物學科的人數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),是自然對數(shù)的底數(shù)).

(1)若函數(shù)在點處的切線方程為,試確定函數(shù)的單調(diào)區(qū)間;

(2)①當,時,若對于任意,都有恒成立,求實數(shù)的最小值;②當時,設函數(shù),是否存在實數(shù),使得?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高一(1)班參加校生物競賽學生的成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

(1)求高一(1)班參加校生物競賽的人數(shù)及分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;

(2)若要從分數(shù)在[80,100]之間的學生中任選2人進行某項研究,求至少有1人分數(shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中,是自然對數(shù)的底數(shù).

(1)若上存在兩個極值點,求的取值范圍;

(2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系O中,直線與拋物線2相交于A、B兩點.

1)求證:命題“如果直線過點T30),那么3”是真命題;

2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點是雙曲線上的動點,是雙曲線的焦點,M的平分線上一點,且,某同學用以下方法研究:延長于點N,可知為等腰三角形,且M的中點,得,類似地:點是橢圓上的動點,橢圓的焦點,M的平分線上一點,且的取值范圍是______

查看答案和解析>>

同步練習冊答案