【題目】如圖,已知橢圓C: + =1(a>b>0)的離心率e= ,過點(0,﹣b),(a,0)的直線與原點的距離為 ,M(x0 , y0)是橢圓上任一點,從原點O向圓M:(x﹣x0)2+(y﹣y0)2=2作兩條切線,分別交橢圓于點P,Q.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若記直線OP,OQ的斜率分別為k1 , k2 , 試求k1k2的值.
【答案】解:(Ⅰ)由橢圓的離心率e= = = ,
即a2=2b2 , ①
設過點(0,﹣b),(a,0)的直線方程為 ,
即bx﹣ay﹣ab=0,
因為直線與原點的距離為 ,
∴ = ,整理得: =2,②
由①②得 ,
∴橢圓的方程為 ;
(Ⅱ)由直線OP:y=k1x,OQ:y=k2x,與圓M相切,
由直線和圓相切的條件:d=r,可得 = = ,
平方整理,可得k12(2﹣x02)+2k1x0y0+2﹣y02=0,
k22(2﹣x02)+2k2x0y0+2﹣y02=0,
∴k1 , k2是方程k2(2﹣x02)+2kx0y0+2﹣y02=0的兩個不相等的實數(shù)根,
k1k2= ,
由點R(x0 , y0)在橢圓C上,
∴ ,即y02=3(1﹣ )=3﹣ x02 ,
∴k1k2= =﹣ ,
k1k2的值為﹣ .
【解析】(Ⅰ)由橢圓的離心率公式可知a2=2b2 , 利用點到直線的距離公式 =2,即可求得a和b的值,即可求得橢圓方程;(Ⅱ)利用點到直線的距離公式,可知k1 , k2是方程k2(2﹣x02)+2kx0y0+2﹣y02=0的兩個不相等的實數(shù)根,利用韋達定理即可求得k1k2 , 由R(x0 , y0)在橢圓C上,y02=3﹣ x02 , 代入即可求得k1k2的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù)與的圖象恰好相切與點,求實數(shù) 的值;
(2)當時, 恒成立,求實數(shù)的取值范圍;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= ,a為常數(shù),且a∈(0,1).
(1)若x0滿足f(x0)=x0 , 則稱x0為f(x)的一階周期點,證明函數(shù)f(x)有且只有兩個一階周期點;
(2)若x0滿足f(f(x0))=x0 , 且f(x0)≠x0 , 則稱x0為f(x)的二階周期點,當a= 時,求函數(shù)f(x)的二階周期點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0, ))的圖象在y軸上的截距為1,在相鄰兩個最值點 和(x0 , ﹣2)上(x0>0),函數(shù)f(x)分別取最大值和最小值.
(1)求函數(shù)f(x)的解析式;
(2)若f(x)= 在區(qū)間 內有兩個不同的零點,求k的取值范圍;
(3)求函數(shù)f(x)在區(qū)間 上的對稱軸方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=asinx﹣bcosx(a、b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)y=f( ﹣x)是( )
A.偶函數(shù)且它的圖象關于點(π,0)對稱
B.偶函數(shù)且它的圖象關于點 對稱
C.奇函數(shù)且它的圖象關于點 對稱
D.奇函數(shù)且它的圖象關于點(π,0)對稱
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求實數(shù)a的值;
(2)求函數(shù)f(x)的單調區(qū)間;
(3)若函數(shù) 在[1,2]上是減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內角A、B、C的對邊分別為a,b,c,且2asinB﹣ bcosA=0.
(1)求cosA;
(2)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com