【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期.一研究團隊統(tǒng)計了某地區(qū)200名患者的相關(guān)信息,得到如下表格:

潛伏期(單位:天)

人數(shù)

17

41

62

50

26

3

1

1)求這200名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進行分層抽樣,從上述200名患者中抽取40人得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);

潛伏期

潛伏期

總計

50歲以上(含50歲)

20

50歲以下

9

總計

40

3)以這200名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立.為了深入硏究,該研究團隊在該地區(qū)隨機調(diào)查了10名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?

附:

0.05

0.025

0.010

3.841

5.024

6.635

,其中

【答案】1(天)(2)填表見解析;沒有的把握認(rèn)為潛伏期與患者年齡有關(guān)(3)最有可能是4

【解析】

1)利用平均值的定義求解即可;
2)根據(jù)題目所給的數(shù)據(jù)填寫2×2列聯(lián)表,根據(jù)公式計算,對照題目中的表格,得出統(tǒng)計結(jié)論;
3)先求出該地區(qū)每名患者潛伏期超過6天發(fā)生的概率,設(shè)調(diào)查的10名患者中潛伏期超過6天的人數(shù)為,由于該地區(qū)人數(shù)較多,則近似服從二項分布,即,,10,由得:,即這10名患者中潛伏期超過6天的人數(shù)最有可能是4人.

解:(1(天).

2)根據(jù)題意,補充完整的列聯(lián)表如下:

潛伏期

潛伏期

總計

50歲以上(含50歲)

15

5

20

50歲以下

9

11

20

總計

24

16

40

,

經(jīng)查表,得,所以沒有的把握認(rèn)為潛伏期與患者年齡有關(guān);

3)由題意可知,該地區(qū)每名患者潛伏期超過6天發(fā)生的概率為.

設(shè)調(diào)查的10名患者中潛伏期超過6天的人數(shù)為,由于該地區(qū)人數(shù)較多,則近似服從二項分布,即,,,10.

,

化簡得,

,所以,即這10名患者中潛伏期超過6天的人數(shù)最有可能是4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列滿足:

(Ⅰ)若;

(。┣笞C:;

(ⅱ)數(shù)列的前項和為,求證:

(Ⅱ)若對任意的,都有,寫出的取值范圍并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PAD為等邊三角形,ABADCD2,∠BAD=∠ADC90°,∠PDC60°EBC的中點.

1)證明:ADPE.

2)求直線PA與平面PDE所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】6個數(shù)2、01、920、19按任意次序排成一行,拼成一個8位數(shù)(首位不為0),則產(chǎn)生的不同的8位數(shù)的個數(shù)為______ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是正方體中的側(cè)面上的一個動點,則下列結(jié)論正確的是(

A.存在無數(shù)個位置滿足

B.若正方體的棱長為1,三棱錐的體積最大值為

C.在線段上存在點,使異面直線所成的角是

D.存在無數(shù)個位置滿足到直線和直線的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐的底面ABCD是邊長為a的菱形,ABCD,E,F分別是CD,PC的中點.

1)求證:平面平面PAB;

2MPB上的動點,EM與平面PAB所成的最大角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓的下頂點及左、右焦點,,過橢圓的左焦點的直線與橢圓相交于,兩點,線段的中垂線交軸于點且垂足為點

)求橢圓的方程;

)證明:當(dāng)直線斜率變化時為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列滿足: , .為數(shù)列的前項和.

(Ⅰ)求證:對任意正整數(shù),有;

(Ⅱ)設(shè)數(shù)列的前項和為,求證:對任意,總存在正整數(shù),使得時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,已知的有中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重的疾病,新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,某小區(qū)為進一步做好新型冠狀病毒肺炎疫情知識的教育,在小區(qū)內(nèi)開展新型冠狀病毒防疫安全公益課在線學(xué)習(xí),在此之后組織了新型冠狀病毒防疫安全知識競賽在線活動.已知進入決賽的分別是甲、乙、丙、丁四位業(yè)主,決賽后四位業(yè)主相應(yīng)的名次為第1,2,34名,該小區(qū)為了提高業(yè)主們的參與度和重視度,邀請小區(qū)內(nèi)的所有業(yè)主在比賽結(jié)束前對四位業(yè)主的名次進行預(yù)測,若預(yù)測完全正確將會獲得禮品,現(xiàn)用ab,cd表示某業(yè)主對甲、乙、丙、丁四位業(yè)主的名次做出一種等可能的預(yù)測排列,記X|a1|+|b2|+|c3|+|d4|

1)求該業(yè)主獲得禮品的概率;

2)求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案