【題目】已知函數(shù)的導函數(shù)為,且對任意的實數(shù)x都有e是自然對數(shù)的底數(shù)),且,若關于x的不等式的解集中恰有兩個整數(shù),則實數(shù)m的取值范圍是( )

A. B. C. D.

【答案】B

【解析】

先利用導數(shù)等式結合條件求出函數(shù)的解析式,由,得

,轉化為函數(shù)在直線下方的圖象中只有兩個橫坐標為整數(shù)的點,然后利用導數(shù)分析函數(shù)的單調性與極值,作出該函數(shù)的圖象,利用數(shù)形結合思想求出實數(shù)的取值范圍.

由等式,可得,

,即為常數(shù)),

,則,

因此,,

,得,列表如下:

極小值

極大值

函數(shù)的極小值為,極大值為,且

作出圖象如下圖所示,由圖象可知,當時,.

另一方面,,則

由于函數(shù)在直線下方的圖象中只有兩個橫坐標為整數(shù)的點,

由圖象可知,這兩個點的橫坐標分別為、,則有,解得

因此,實數(shù)的取值范圍是,故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況.下列敘述中正確的是(

A.消耗1升汽油,乙車最多可行駛5千米

B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C.甲車以80千米/小時的速度行駛1小時,消耗8升汽油

D.某城市機動車最高限速80千米/小時.相同條件下,在該市用乙車比用丙車更省油

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,點的中點,點上的動點,下列說法中:

可能與平面平行;

所成的角的最大值為;

一定垂直;

.

其中正確個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知自變量為的函數(shù).其中為自然對數(shù)的底,.

(Ⅰ)求函數(shù)的單調區(qū)間,并且討論函數(shù)的單調性;

(Ⅱ)已知,求證:

(。┓匠有兩個根,

(ⅱ)若(。┲械膬蓚根滿足,,則,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)為奇函數(shù),且有極小值

1)求實數(shù)的值;

2)求實數(shù)的取值范圍;

3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,準線為上一點,直線與拋物線交于,兩點,若,則=

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)當時,求證:時,;

(Ⅱ)當時,計論函數(shù)的極值點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若曲線與直線相切,求的值.

Ⅱ)若求證:有兩個不同的零點,且.(為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某校一間辦公室有四位老師甲、乙、丙、丁.在某天的某個時段,他們每人各做一項工作,一人在查資料,一人在寫教案,一人在批改作業(yè),另一人在打印材料.

若下面4個說法都是正確的:

甲不在查資料,也不在寫教案; 乙不在打印材料,也不在查資料;

丙不在批改作業(yè),也不在打印材料; 丁不在寫教案,也不在查資料.

此外還可確定:如果甲不在打印材料,那么丙不在查資料.根據(jù)以上信息可以判斷

A.甲在打印材料

B.乙在批改作業(yè)

C.丙在寫教案

D.丁在打印材料

查看答案和解析>>

同步練習冊答案