【題目】如圖,在正方體中,點的中點,點上的動點,下列說法中:

可能與平面平行;

所成的角的最大值為;

一定垂直;

.

其中正確個數(shù)為(

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)點的中點,點上的動點,①中,當的中點時,,由線面平行的判定定理判斷.②中,當的中點時,由垂直平行線中的一條則垂直另一條判斷.③中,由,由線面垂直的判定定理判斷.④中,當的中點時,由勾股定理判斷.

在棱長為1的正方體中,點的中點,點上的動點,

知:在①中,當的中點時,,由線面平行的判定定理可得與平面平行,故①正確;

在②中,當的中點時, ,,,可得,故②錯誤;

在③中,由,,可得平面,即有,故③正確;

在④中,當的中點時,的長取得最小值,且長為,故④正確.

所以正確的個數(shù)為3.

故選:C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知從1開始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為3,5,第三行為7,911,第四行為1315,17,19,如圖所示,在寶塔形數(shù)表中位于第行,第列的數(shù)記為,比如,,若,則

A.64B.65C.71D.72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:

1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學期望;

2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機抽取2件,假設(shè)其中至少有1件是標準長度產(chǎn)品的概率不小于0.8時,該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時,生產(chǎn)一件產(chǎn)品為標準長度的概率的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的兩頂點分別為為雙曲線的一個焦點,為虛軸的一個端點,若在線段上(不含端點)存在兩點,使得,則雙曲線的漸近線斜率的平方的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了參加上海的進博會,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

試銷單價x(元)

4

5

6

7

8

9

產(chǎn)品銷量y(件)

q

84

83

80

75

68

已知.參考公式:

1)求出q的值;

2)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程;

3)用表示用正確的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取2個,求抽取的2個銷售數(shù)據(jù)中至少有一個是好數(shù)據(jù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著時代的發(fā)展和社會的進步,農(nóng)村淘寶發(fā)展十分迅速,促進農(nóng)產(chǎn)品進城消費品下鄉(xiāng).農(nóng)產(chǎn)品進城很好地解決了農(nóng)產(chǎn)品與市場的對接問題,使農(nóng)民收入逐步提高,生活水平得到改善,農(nóng)村從事網(wǎng)店經(jīng)營的人收入逐步提高.西鳳臍橙是四川省南充市的特產(chǎn),因果實呈橢圓形、色澤橙紅、果面光滑、無核、果肉脆嫩化渣、汁多味濃,深受人們的喜愛.為此小王開網(wǎng)店銷售西鳳臍橙,每月月初購進西鳳臍橙,每售出1噸西鳳臍橙獲利潤800元,未售出的西鳳臍橙,每1噸虧損500.經(jīng)市場調(diào)研,根據(jù)以往的銷售統(tǒng)計,得到一個月內(nèi)西鳳臍橙市場的需求量的頻率分布直方圖如圖所示.小王為下一個月購進了100噸西鳳臍橙,以x(單位:噸)表示下一個月內(nèi)市場的需求量,y(單位:元)表示下一個月內(nèi)經(jīng)銷西鳳臍橙的銷售利潤.

1)將y表示為x的函數(shù);

2)根據(jù)頻率分布直方圖估計小王的網(wǎng)店下一個月銷售利潤y不少于67000元的概率;

3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率,(例如:若需求量,則取,且的概率等于需求量落入的頻率),求小王的網(wǎng)店下一個月銷售利潤y的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正四面體 ABCD 中,P,Q分別是棱 AB,CD的中點,E,F(xiàn)分別是直線AB,CD上的動點,M 是EF 的中點,則能使點 M 的軌跡是圓的條件是( )

A. PE+QF=2B. PEQF=2

C. PE=2QFD. PE2+QF2=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù)為,且對任意的實數(shù)x都有e是自然對數(shù)的底數(shù)),且,若關(guān)于x的不等式的解集中恰有兩個整數(shù),則實數(shù)m的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(

A.向左平移個單位長度,縱坐標縮短到原來的,橫坐標不變

B.向左平移個單位長度,縱坐標伸長到原來的3倍橫坐標不變

C.向右平移個單位長度,縱坐標縮短到原來的,橫坐標不變

D.向右平移個單位長度,縱坐標伸長到原來的3倍,橫坐標不變

查看答案和解析>>

同步練習冊答案