【題目】已知自變量為的函數(shù).其中為自然對(duì)數(shù)的底,.

(Ⅰ)求函數(shù)的單調(diào)區(qū)間,并且討論函數(shù)的單調(diào)性;

(Ⅱ)已知,求證:

(。┓匠有兩個(gè)根,;

(ⅱ)若(。┲械膬蓚(gè)根滿足,,則,.

【答案】(Ⅰ)增區(qū)間為,減區(qū)間為;增區(qū)間為,見解析(Ⅱ)(。┮娊馕觯áⅲ┮娊馕

【解析】

(Ⅰ)分別求得,的導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間,進(jìn)而得到最值,可得單調(diào)區(qū)間;討論為奇數(shù)和偶數(shù),即可得到所求單調(diào)性;

(Ⅱ),(。┻\(yùn)用為奇數(shù)的函數(shù)的單調(diào)性,結(jié)合圖象即可得證;

(ⅱ)為奇數(shù)時(shí),遞減,在遞增,且越小,函數(shù)的圖象與直線的交點(diǎn)越靠近軸,即可得證.

解:(Ⅰ)的導(dǎo)數(shù)為

,由時(shí);由時(shí);

可得的增區(qū)間為,減區(qū)間為;

的導(dǎo)數(shù)為

,,

可得,

可得的增區(qū)間為;

經(jīng)過次導(dǎo)數(shù)可得,

,在時(shí),;時(shí);

次求導(dǎo)時(shí),導(dǎo)函數(shù)在遞增;遞減,

即有導(dǎo)函數(shù)的最小值為0,

可得為奇數(shù),遞減,在遞增;

為偶數(shù)時(shí),遞增;

(Ⅱ)證明:,(。┯為奇數(shù),遞減,

遞增;可得,有最小值0,無最大值,

則方程有兩個(gè)根,;

(ⅱ)若(。┲械膬蓚(gè)根滿足,,

由于為奇數(shù)時(shí),遞減,在遞增,

越小,函數(shù)的圖象與直線的交點(diǎn)越靠近軸,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長為2的菱形,點(diǎn)E,F分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).

求證:(1)直線平面EFG;

2)直線平面SDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的兩頂點(diǎn)分別為,為雙曲線的一個(gè)焦點(diǎn),為虛軸的一個(gè)端點(diǎn),若在線段上(不含端點(diǎn))存在兩點(diǎn),使得,則雙曲線的漸近線斜率的平方的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著時(shí)代的發(fā)展和社會(huì)的進(jìn)步,農(nóng)村淘寶發(fā)展十分迅速,促進(jìn)農(nóng)產(chǎn)品進(jìn)城消費(fèi)品下鄉(xiāng).農(nóng)產(chǎn)品進(jìn)城很好地解決了農(nóng)產(chǎn)品與市場的對(duì)接問題,使農(nóng)民收入逐步提高,生活水平得到改善,農(nóng)村從事網(wǎng)店經(jīng)營的人收入逐步提高.西鳳臍橙是四川省南充市的特產(chǎn),因果實(shí)呈橢圓形、色澤橙紅、果面光滑、無核、果肉脆嫩化渣、汁多味濃,深受人們的喜愛.為此小王開網(wǎng)店銷售西鳳臍橙,每月月初購進(jìn)西鳳臍橙,每售出1噸西鳳臍橙獲利潤800元,未售出的西鳳臍橙,每1噸虧損500.經(jīng)市場調(diào)研,根據(jù)以往的銷售統(tǒng)計(jì),得到一個(gè)月內(nèi)西鳳臍橙市場的需求量的頻率分布直方圖如圖所示.小王為下一個(gè)月購進(jìn)了100噸西鳳臍橙,以x(單位:噸)表示下一個(gè)月內(nèi)市場的需求量,y(單位:元)表示下一個(gè)月內(nèi)經(jīng)銷西鳳臍橙的銷售利潤.

1)將y表示為x的函數(shù);

2)根據(jù)頻率分布直方圖估計(jì)小王的網(wǎng)店下一個(gè)月銷售利潤y不少于67000元的概率;

3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率,(例如:若需求量,則取,且的概率等于需求量落入的頻率),求小王的網(wǎng)店下一個(gè)月銷售利潤y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四面體 ABCD 中,P,Q分別是棱 AB,CD的中點(diǎn),E,F(xiàn)分別是直線AB,CD上的動(dòng)點(diǎn),M 是EF 的中點(diǎn),則能使點(diǎn) M 的軌跡是圓的條件是( )

A. PE+QF=2B. PEQF=2

C. PE=2QFD. PE2+QF2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐的底面中,,,平面,的中點(diǎn),且

1)求證:∥平面;

2)求二面角的余弦值;

3)在線段內(nèi)是否存在點(diǎn),使得?若存在指出點(diǎn)的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對(duì)任意的實(shí)數(shù)x都有e是自然對(duì)數(shù)的底數(shù)),且,若關(guān)于x的不等式的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)m的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為為橢圓上一動(dòng)點(diǎn)(異于左右頂點(diǎn)),面積的最大值為

(1)求橢圓的方程;

(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面, ,且

1證明:平面平面

2若直線與平面所成的角為求二面角

的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案