【題目】:實數(shù)滿足,:實數(shù)滿足.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若,且的充分不必要條件,求實數(shù)的取值范圍.

【答案】12x32≤a≤2

【解析】

試題(1)由得(x-a)(x-2a+1))<0,當a=1時,代入可得.由|x-3|1,得-1x-31,即可得出.利用p∧q為真,則p真且q真,即可得出;(2)若¬p是¬q的充分不必要條件,可得qp的充分不必要條件,即可得出

試題解析:(1)由x23a+1x+2a2+a0得(x﹣a)(x﹣2a+1))<0

a=1時,1x3,即p為真時實數(shù)x的取值范圍是1x3

|x﹣3|1,得﹣1x﹣31,得2x4

q為真時實數(shù)x的取值范圍是2x4

p∧q為真,則p真且q真,

實數(shù)x的取值范圍是2x3

2)若¬p是¬q的充分不必要條件,

則¬pq,且¬qp,

A={x|p}B={x|q},則AB,

A={x|p}={x|x≤ax≥2a+1},

B={x|q}={x|x≥4x≤2},

0a≤2,且2a+1≥4

實數(shù)a的取值范圍是≤a≤2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一張坐標紙上一已作出圓及點折疊此紙片,使與圓周上某點重合,每次折疊都會留下折痕,設折痕與直線的交點為令點的軌跡為.

(1)求軌跡的方程

(2)若直線與軌跡交于兩個不同的點,且直線與以為直徑的圓相切,,的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點, 軸正半軸為極軸,取相同的長度單位建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)在平面直角坐標系中,將曲線的縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,得到曲線,過點作直線,交曲線兩點,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線與圓C相切,圓心C的坐標為

1)求圓C的方程;

2)設直線y=x+m與圓C交于MN兩點.

①若,求m的取值范圍;

②若OMON,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年是內(nèi)蒙古自治區(qū)成立70周年.某市旅游文化局為了慶祝內(nèi)蒙古自治區(qū)成立70周年,舉辦了第十三屆成吉思汗旅游文化周.為了了解該市關注“旅游文化周”居民的年齡段分布,隨機抽取了名年齡在且關注“旅游文化周”的居民進行調(diào)查,所得結(jié)果統(tǒng)計為如圖所示的頻率分布直方圖.

年齡

單人促銷價格(單位:元)

(Ⅰ)根據(jù)頻率分布直方圖,估計該市被抽取市民的年齡的平均數(shù);

(Ⅱ)某旅行社針對“旅游文化周”開展不同年齡段的旅游促銷活動,各年齡段的促銷價位如表所示.已知該旅行社的運營成本為每人元,以頻率分布直方圖中各年齡段的頻率分布作為參團旅客的年齡頻率分布,試通過計算確定該旅行社的這一活動是否盈利;

(Ⅲ)若按照分層抽樣的方法從年齡在, 的居民中抽取人進行旅游知識推廣,并在知識推廣后再抽取人進行反饋,求進行反饋的居民中至少有人的年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調(diào)查,將他們在某段高速公路的車速()分成六段: , , , , ,后得到如圖的頻率分布直方圖.

(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;

(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標方程;

(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的兩個焦點,且點在橢圓C上.

1)求橢圓C的方程;

2)直線(m>0)與橢圓C有且僅有一個公共點,且與x軸和y軸分別交于點M,N,當△OMN面積取最小值時,求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若動圓與圓外切,且與直線相切,則動圓圓心的軌跡方程是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案