【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速()分成六段: , , , , ,后得到如圖的頻率分布直方圖.

(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;

(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

【答案】1)眾數(shù)的估計值等于775 中位數(shù)的估計值為7752

【解析】

試題分析; (1)選出直方圖中最高的矩形求出其底邊的中點即為眾數(shù);求出從左邊開始小矩形的面積和為0.5對應(yīng)的橫軸的左邊即為中位數(shù);利用各個小矩形的面積乘以對應(yīng)矩形的底邊的中點的和為數(shù)據(jù)的平均數(shù).
(2)從圖中可知,車速在 的車輛數(shù)和車速在 的車輛數(shù).從車速在 的車輛中任抽取2輛,設(shè)車速在 的車輛設(shè)為 車速在 的車輛設(shè)為 列出各自的基本事件數(shù),從而求出相應(yīng)的概率即可.

試題解析:

(1)眾數(shù)的估計值為最高的矩形的中點,即眾數(shù)的估計值等于77.5,

設(shè)圖中虛線所對應(yīng)的車速為,則中位數(shù)的估計值為:

,解得

即中位數(shù)的估計值為

(2)從圖中可知,車速在的車輛數(shù)為:(輛),

車速在的車輛數(shù)為:(輛),

設(shè)車速在的車輛設(shè)為,,車速在的車輛設(shè)為,,,,則所有基本事件有:

,,,,,,,,,,,,共15種,

其中車速在的車輛恰有一輛的事件有:,,,,,共8種.

所以,車速在的車輛恰有一輛的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得?ǎ◥蹏、富強(qiáng)福、和諧福、友善福,敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個社團(tuán)在年后開學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

1)根據(jù)如上的列聯(lián)表,能否在犯錯誤的概率不超過0.05的前提下,認(rèn)為“集齊五福與性別有關(guān)”?

2)計算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒,該大學(xué)的學(xué)生會從集齊五福的學(xué)生中,選取2位男生和3位女生逐個進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對象中至少有一位男生的概率.

參考公式 .

附表

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,).

1)求的值;

2)是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,請說明理由;

3)設(shè)數(shù)列的前n項和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn,且Sn=3an+1(n∈N*).

(1)求數(shù)列{an}的通項公式;

(2)若數(shù)列{bn}滿足,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè):實數(shù)滿足:實數(shù)滿足.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若,且的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面ABCD底面是邊長為2的正方形, 的中點,的中點.

(1)求直線MN與直線CD所成角的余弦值;

(2)求直線OB與平面OCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面為菱形,且,

)求證: ;

)若,求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20171018日至1024日,中國共產(chǎn)黨第十九次全國代表大會簡稱黨的“十九大”在北京召開一段時間后,某單位就“十九大”精神的領(lǐng)會程度隨機(jī)抽取100名員工進(jìn)行問卷調(diào)查,調(diào)查問卷共有20個問題,每個問題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名員工的成績都在內(nèi),按成績分成5組:第1,第2,第3,第4,第5,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對“十九大”精神作深入學(xué)習(xí).

求這100人的平均得分同一組數(shù)據(jù)用該區(qū)間的中點值作代表

求第3,4,5組分別選取的作深入學(xué)習(xí)的人數(shù);

若甲、乙、丙都被選取對“十九大”精神作深入學(xué)習(xí),之后要從這6人隨機(jī)選取2人再全面考查他們對“十九大”精神的領(lǐng)會程度,求甲、乙、丙這3人至多有一人被選取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中,已知, , 是正三角形, , , 的中點.

1)求證: 平面

2)求證:平面平面;

3)求到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案