【題目】四棱柱有幾條側(cè)棱,幾個頂點 ( )
A. 四條側(cè)棱、四個頂點 B. 八條側(cè)棱、四個頂點
C. 四條側(cè)棱、八個頂點 D. 六條側(cè)棱、八個頂點
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l垂直于直線AB和AC,直線m垂直于直線BC和AC,則直線l,m的位置關(guān)系是( )
A. 平行 B. 異面 C. 相交 D. 垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為解決困難職工的住房問題,決定分批建設(shè)保障性住房供給困難職工,首批計劃用100萬元購買一塊土地,該土地可以建造每層1000平方米的樓房一幢,樓房的每平方米建筑費用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費用提高20元,已知建筑第1層樓房時,每平方米的建筑費用為920元.為了使該幢樓房每平方米的平均費用最低(費用包括建筑費用和購地費用),應(yīng)把樓房建成幾層?此時平均費用為每平方米多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,兩點的坐標(biāo)分別為,,動點滿足:直線與直線的斜率之積為.
(1)求動點的軌跡方程;
(2)過點作兩條互相垂直的射線,與(1)的軌跡分別交于,兩點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(a>0,且a≠1)
(1)判斷f(x)的奇偶性并證明;
(2)若對于x∈[2,4],恒有f(x)>loga成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水庫的儲水量隨時間而變化,現(xiàn)用表示事件,以月為單位,以年初為起點,根據(jù)歷年數(shù)據(jù),某水庫的儲水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為:
(1)該水庫的儲水量小于50的時期稱為枯水期,問:一年內(nèi)那幾個月份是枯水期?
(2)求一年內(nèi)該水庫的最大儲水量.
(取的值為4.6計算.的值為20計算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】側(cè)棱垂直于底面的棱柱叫做直棱柱.
側(cè)棱不垂直于底面的棱柱叫作斜棱柱.
底面是正多邊形的直棱柱叫作正棱柱.
底面是平行四邊形的四棱柱叫作平行六面體.
側(cè)棱與底面垂直的平行六面體叫作直平行六面體.
底面是矩形的直平行六面體叫作長方體.
棱長都相等的長方體叫作正方體.
請根據(jù)上述定義,回答下面的問題(填“一定”、“不一定”“一定不”):
(1)直四棱柱________是長方體;
(2)正四棱柱________是正方體.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價格y和房屋的面積x的數(shù)據(jù):
房屋面積x(m2) | 115 | 110 | 80 | 135 | 105 |
銷售價格y(萬元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫出數(shù)據(jù)對應(yīng)的散點圖;
(2)求線性回歸方程,并在散點圖中加上回歸直線.
(參考公式=,=+,其中=60 975,=12 952)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com