【題目】水庫的儲水量隨時間而變化,現(xiàn)用表示事件,以月為單位,以年初為起點,根據(jù)歷年數(shù)據(jù),某水庫的儲水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為

(1)該水庫的儲水量小于50的時期稱為枯水期,問:一年內(nèi)那幾個月份是枯水期?

(2)求一年內(nèi)該水庫的最大儲水量.

(取的值為4.6計算.的值為20計算)

【答案】(1)枯水期:1,2,3,4,5,10,11,12月;(2)最大蓄水量是150億立方米.

【解析】

試題分析:本題是函數(shù)應(yīng)用題,函數(shù)式已知,因此第(1)小題只要根據(jù)枯水期的概念解不等式即得,只是由于是分段函數(shù),因此要分段求解不等式;(2)求函數(shù)最大值,根據(jù)(1)的結(jié)論,蓄水最大值只能在6,7,8月份取得,這時,可求導,由導數(shù)的知識求得最大值.

試題解析:(1)當,

解得,

從而

,

解得,所以

綜上,,枯水期,1,2,3,4,5,10,11,12月.

(2)由(1)知,水庫的最大蓄水量只能在6-9月份.

,

,解得(舍),

又當時,,遞增;

,,遞減

所以,當,的最大值(億立方米),

故一年內(nèi)該水庫的最大蓄水量是150億立方米.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】用反證法證明命題“三角形的內(nèi)角至多有一個鈍角”時,應(yīng)假設(shè)為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是正方形,平面,分別為的中點.

(1)求證:平面

(2)求平面與平面所成銳二面角的大;

(3)在線段上是否存在一點,使直線與直線所成的角為?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱柱有幾條側(cè)棱幾個頂點 (  )

A. 四條側(cè)棱、四個頂點 B. 八條側(cè)棱、四個頂點

C. 四條側(cè)棱、八個頂點 D. 六條側(cè)棱、八個頂點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從遂寧市中、小學生中抽取部分學生,進行肺活量調(diào)查.經(jīng)了解,我市小學、初中、高中三個學段學生的肺活量有較大差異,而同一學段男女生的肺活量差異不大.在下面的抽樣方法中,最合理的抽樣方法是

A. 簡單的隨機抽樣 B. 按性別分層抽樣

C. 按學段分層抽樣 D. 系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用反證法證明命題“三角形內(nèi)角中至多有一個鈍角”,假設(shè)正確的是( )

A. 假設(shè)三個內(nèi)角都是銳角 B. 假設(shè)三個內(nèi)角都是鈍角

C. 假設(shè)三個內(nèi)角中至少有兩個鈍角 D. 假設(shè)三個內(nèi)角中至少有兩個銳角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于棱柱的說法中,錯誤的是(  )

A. 三棱柱的底面為三角形

B. 一個棱柱至少有五個面

C. 若棱柱的底面邊長相等,則它的各個側(cè)面全等

D. 五棱柱有5條側(cè)棱、5個側(cè)面,側(cè)面為平行四邊形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等腰直角三角形,其中, 分別是、

的中點,現(xiàn)將沿著邊折起到位置, 使,連結(jié)

求證:BCPB

求PC與平面ABCD所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知α、β是兩個平面,直線lα,lβ,若以lα;lβ;αβ中兩個為條件,另一個為結(jié)論構(gòu)成三個命題,則其中正確的命題有 (   )

A. ①③;①②

B. ①③;②③

C. ①②;②③

D. ①③;①②;②③

查看答案和解析>>

同步練習冊答案