【題目】已知函數(shù)的導(dǎo)函數(shù),為自然對(duì)數(shù)的底數(shù).

1)討論的單調(diào)性;

2)當(dāng)時(shí),證明:;

3)當(dāng)時(shí),判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

【答案】(1)①當(dāng)時(shí), 上為減函數(shù);②當(dāng)時(shí), 的減區(qū)間為,增區(qū)間為;(2) 證明見(jiàn)解析;(3)一個(gè)零點(diǎn),理由見(jiàn)解析.

【解析】

試題分析:(1)討論函數(shù)單調(diào)性,先求導(dǎo),當(dāng)時(shí),,故上為減函數(shù);當(dāng)時(shí),解可得,故的減區(qū)間為,增區(qū)間為;(2)根據(jù),構(gòu)造函數(shù),設(shè),,當(dāng)時(shí),,所以是增函數(shù),,得證;(3)判斷函數(shù)的零點(diǎn)個(gè)數(shù),需要研究函數(shù)的增減性及極值端點(diǎn),由(1)可知,當(dāng)時(shí),是先減再增的函數(shù),其最小值為,而此時(shí),且,故恰有兩個(gè)零點(diǎn),

從而得到的增減性,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,從而兩點(diǎn)分別取到極大值和極小值,再證明極大值,所以函數(shù)不可能有兩個(gè)零點(diǎn),只能有一個(gè)零點(diǎn).

試題解析:

(1)對(duì)函數(shù)求導(dǎo)得,

,

①當(dāng)時(shí),,故上為減函數(shù);

②當(dāng)時(shí),解可得,故的減區(qū)間為,增區(qū)間為;

(2) ,設(shè),則

易知當(dāng)時(shí),

;

3)由(1)可知,當(dāng)時(shí),是先減再增的函數(shù),

其最小值為,

而此時(shí),且,故恰有兩個(gè)零點(diǎn),

∵當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),

,

兩點(diǎn)分別取到極大值和極小值,且

,

,

,∴,但當(dāng)時(shí),,則,不合題意,所以,故函數(shù)的圖象與軸不可能有兩個(gè)交點(diǎn).

∴函數(shù)只有一個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),函數(shù)的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的范圍;

(2)討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)ya2x+2ax-1(a>0且a≠1),當(dāng)自變量x∈[-1,1]時(shí),函數(shù)的最大值為14.試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點(diǎn).

(Ⅰ)求曲線的直角坐標(biāo)方程及直線恒過(guò)的定點(diǎn)的坐標(biāo);

(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對(duì)任意x∈(0,+∞),恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設(shè)相交于點(diǎn),

1)證明:平面平面;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京時(shí)間3月15日下午,谷歌圍棋人工智能與韓國(guó)棋手李世石進(jìn)行最后一輪較量,獲得本場(chǎng)比賽勝利,最終人機(jī)大戰(zhàn)總比分定格在.人機(jī)大戰(zhàn)也引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(1)根據(jù)已知條件完成如圖列聯(lián)表,并據(jù)此資料判斷你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記所抽取的3名學(xué)生中的“圍棋迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差

附:,其中

0.05

0.010

3.74

6.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的奇函數(shù), 是常數(shù).

1的值;

2用定義法證明的增函數(shù)

3不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,已知AB側(cè)面BB1C1CABBC=1,BB1=2,∠BCC1 .

(1)求證:C1B平面ABC;

設(shè) (0≤λ≤1),且平面AB1EBB1E所成的銳二面角的大小為30°,

試求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案