精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在三棱柱ABCA1B1C1中,已知AB側面BB1C1C,ABBC=1,BB1=2,∠BCC1 .

(1)求證:C1B平面ABC

(0≤λ≤1),且平面AB1EBB1E所成的銳二面角的大小為30°,

試求λ的值.

【答案】(1)見解析(2)1

【解析】試題分析:(1)先由線面垂直的性質證明,再根據余玄定理及勾股定理證明,利用直線與平面垂直的判斷定理證明平面;(2)通過兩兩垂直.為原點,所在直線軸建立空間直角坐標系.求出相關點的坐標,求出平面的一個法向量,平面BB1E的一個法向量通過向量的數量積,推出的方程,求解即可.

試題解析:(1)證明:因為AB⊥側面BB1C1C,BC1側面BB1C1C,故ABBC1.

在△BCC1中,BC=1,CC1BB1=2,∠BCC1

BCBC2CC-2BC·CC1·cos∠BCC1=12+22-2×1×2×cos=3.

所以BC1,故BC2BCCC,所以BCBC1

BCABB 所以C1B⊥平面ABC.

(2)由(1)可知,ABBC,BC1兩兩垂直.以B為原點,BC,BABC1所在直線分別為x軸,y軸,z軸建立空間直角坐標系.

B(0,0,0),A(0,1,0),B1(-1,0,),C(1,0,0),C1(0,0,).

所以=(-1,0,),所以=(-λ,0,λ),則E(1-λ,0,λ).

則=(1-λ,-1,λ),=(-1,-1,).

設平面AB1E的法向量為n=(xy,z),

則即

z,則xy,

n是平面AB1E的一個法向量.

因為AB⊥平面BB1C1C,所以=(0,1,0)是平面BB1E的一個法向量,

所以|cos〈n,〉|=

.

兩邊平方并化簡得2λ2-5λ+3=0,所以λ=1或λ (舍去).

故所求λ的值為1

【方法點晴】本題主要考查線面垂直的判定定理以及利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數的導函數,為自然對數的底數.

1)討論的單調性;

2)當時,證明:;

3)當時,判斷函數零點的個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司即將推車一款新型智能手機,為了更好地對產品進行宣傳,需預估市民購買該款手機是否與年齡有關,現隨機抽取了50名市民進行購買意愿的問卷調查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調查結果用莖葉圖表示如圖所示.

(1)根據莖葉圖中的數據完成列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?

購買意愿強

購買意愿弱

合計

20~40歲

大于40歲

合計

(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,記抽到的2人中年齡大于40歲的市民人數為,求的分布列和數學期望.

附:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面給出四種說法:

①用相關指數R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;

②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③設隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p

④回歸直線一定過樣本點的中心( ).

其中正確的說法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求證:當x>1時,f(x)>0成立;

(2)若t> ,判斷函數g(x)=x[f(x)+t+1]的零點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,為了保護環(huán)境,實現城市綠化,某房地產公司要在拆遷地長方形ABCD處規(guī)劃一塊長方形地面HPGC,建造住宅小區(qū)公園,但不能越過文物保護區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設計才能使公園占地面積最大,求出最大面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是二次函數,且滿足f(0)=1,f(x+1)-f(x)=2x,求f(x).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)生產某種產品時的能耗y與產品件數x之間的關系式為y=ax+.且當x=2時,y=100;當x=7時,y=35.且此產品生產件數不超過20件.

(1)寫出函數y關于x的解析式;

(2)用列表法表示此函數,并畫出圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, ,記

。

(1) 判斷的奇偶性(不用證明)并寫出的單調區(qū)間;

(2)若對于一切恒成立,求實數的取值范圍.

(3)對任意,都存在,使得 .若,求實數的值;

查看答案和解析>>

同步練習冊答案