【題目】如圖,在三棱柱ABCA1B1C1中,已知AB⊥側面BB1C1C,AB=BC=1,BB1=2,∠BCC1= .
(1)求證:C1B⊥平面ABC;
設 (0≤λ≤1),且平面AB1E與BB1E所成的銳二面角的大小為30°,
試求λ的值.
【答案】(1)見解析(2)1
【解析】試題分析:(1)先由線面垂直的性質證明,再根據余玄定理及勾股定理證明,利用直線與平面垂直的判斷定理證明平面;(2)通過兩兩垂直.以為原點,所在直線軸建立空間直角坐標系.求出相關點的坐標,求出平面的一個法向量,平面BB1E的一個法向量,通過向量的數量積,推出的方程,求解即可.
試題解析:(1)證明:因為AB⊥側面BB1C1C,BC1側面BB1C1C,故AB⊥BC1.
在△BCC1中,BC=1,CC1=BB1=2,∠BCC1=,
BC=BC2+CC-2BC·CC1·cos∠BCC1=12+22-2×1×2×cos=3.
所以BC1=,故BC2+BC=CC,所以BC⊥BC1,
而BC∩AB=B 所以C1B⊥平面ABC.
(2)由(1)可知,AB,BC,BC1兩兩垂直.以B為原點,BC,BA,BC1所在直線分別為x軸,y軸,z軸建立空間直角坐標系.
則B(0,0,0),A(0,1,0),B1(-1,0,),C(1,0,0),C1(0,0,).
所以=(-1,0,),所以=(-λ,0,λ
則=(1-λ,-1,λ),=(-1,-1,).
設平面AB1E的法向量為n=(x,y,z),
則即
令z=,則x=,y=,
故n=是平面AB1E的一個法向量.
因為AB⊥平面BB1C1C,所以=(0,1,0)是平面BB1E的一個法向量,
所以|cos〈n,〉|=
=
=.
兩邊平方并化簡得2λ2-5λ+3=0,所以λ=1或λ= (舍去).
故所求λ的值為1
【方法點晴】本題主要考查線面垂直的判定定理以及利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.
科目:高中數學 來源: 題型:
【題目】某公司即將推車一款新型智能手機,為了更好地對產品進行宣傳,需預估市民購買該款手機是否與年齡有關,現隨機抽取了50名市民進行購買意愿的問卷調查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調查結果用莖葉圖表示如圖所示.
(1)根據莖葉圖中的數據完成列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?
購買意愿強 | 購買意愿弱 | 合計 | |
20~40歲 | |||
大于40歲 | |||
合計 |
(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,記抽到的2人中年齡大于40歲的市民人數為,求的分布列和數學期望.
附:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面給出四種說法:
①用相關指數R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( ).
其中正確的說法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (t+1)lnx,,其中t∈R.
(1)若t=1,求證:當x>1時,f(x)>0成立;
(2)若t> ,判斷函數g(x)=x[f(x)+t+1]的零點的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,為了保護環(huán)境,實現城市綠化,某房地產公司要在拆遷地長方形ABCD處規(guī)劃一塊長方形地面HPGC,建造住宅小區(qū)公園,但不能越過文物保護區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設計才能使公園占地面積最大,求出最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)生產某種產品時的能耗y與產品件數x之間的關系式為y=ax+.且當x=2時,y=100;當x=7時,y=35.且此產品生產件數不超過20件.
(1)寫出函數y關于x的解析式;
(2)用列表法表示此函數,并畫出圖象.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數, ,記
。
(1) 判斷的奇偶性(不用證明)并寫出的單調區(qū)間;
(2)若對于一切恒成立,求實數的取值范圍.
(3)對任意,都存在,使得, .若,求實數的值;
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com