【題目】在直角坐標(biāo)系中,曲線C的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線C的參數(shù)方程和直線的直角坐標(biāo)方程;

(2)若直線軸和y軸分別交于A,B兩點(diǎn),P為曲線C上的動(dòng)點(diǎn),求PAB面積的最大值.

【答案】1為參數(shù)),2

【解析】

1)根據(jù)橢圓參數(shù)方程形式和極坐標(biāo)與直角坐標(biāo)互化原則即可得到結(jié)果;(2)可求出,所以求解面積最大值只需求出點(diǎn)到直線距離的最大值;通過(guò)假設(shè),利用點(diǎn)到直線距離公式得到,從而得到當(dāng)時(shí),最大,從而進(jìn)一步求得所求最值.

1)由,得的參數(shù)方程為為參數(shù))

,得直線的直角坐標(biāo)方程為

2)在中分別令可得:

設(shè)曲線上點(diǎn),則距離:

,其中:,

當(dāng),

所以面積的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓上動(dòng)點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為4,且到右焦點(diǎn)距離的最大值為

(1)求橢圓的方程;

(2)設(shè)點(diǎn)為橢圓的上頂點(diǎn),若直線與橢圓交于兩點(diǎn)不是上下頂點(diǎn)).試問(wèn):直線是否經(jīng)過(guò)某一定點(diǎn),若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由;

(3)在(2)的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,平面平面,點(diǎn)為棱的中點(diǎn).

(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說(shuō)明理由;

(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸.已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,射線,,,與曲線分別交異于極點(diǎn)的四點(diǎn),,

)若曲線關(guān)于曲線對(duì)稱,求的值,并把曲線化成直角坐標(biāo)方程.

)求,當(dāng)時(shí),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的方程為.

1)若直線軸、軸上的截距之和為-1,求坐標(biāo)原點(diǎn)到直線的距離;

2)若直線與直線分別相交于、兩點(diǎn),點(diǎn)兩點(diǎn)的距離相等,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019112日,中國(guó)藥品監(jiān)督管理局批準(zhǔn)了治療阿爾茨海默。ɡ夏臧V呆癥)新藥GV-971的上市申請(qǐng),這款新藥由我國(guó)科研人員研發(fā),我國(guó)擁有完全知識(shí)產(chǎn)權(quán).據(jù)悉,該款藥品為膠囊,從外觀上看是兩個(gè)半球和一個(gè)圓柱組成,其中上半球是膠囊的蓋子,粉狀藥物儲(chǔ)存在圓柱及下半球中.膠囊軸截面如圖所示,兩頭是半圓形,中間區(qū)域是矩形,其周長(zhǎng)為50毫米,藥物所占的體積為圓柱體積和一個(gè)半球體積之和.假設(shè)的長(zhǎng)為毫米.(注:,,其中為球半徑,為圓柱底面積,為圓柱的高)

1)求膠囊中藥物的體積關(guān)于的函數(shù)關(guān)系式;

2)如何設(shè)計(jì)的長(zhǎng)度,使得最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的兩個(gè)頂點(diǎn)為,,平面內(nèi)P,Q同時(shí)滿足;

求頂點(diǎn)A的軌跡E的方程;

過(guò)點(diǎn)作兩條互相垂直的直線,直線被點(diǎn)A的軌跡E截得的弦分別為,設(shè)弦的中點(diǎn)分別為M,試問(wèn):直線MN是否恒過(guò)一個(gè)頂點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出該頂點(diǎn),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線,若直線上存在點(diǎn),過(guò)點(diǎn)引圓的兩條切線,使得,則實(shí)數(shù)的取值范圍是( )

A. B. [,]

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案