【題目】已知兩個無窮數(shù)列的前項和分別為, , , ,對任意的,都有

1)求數(shù)列的通項公式;

2)若 為等差數(shù)列,對任意的,都有證明: ;

3)若 為等比數(shù)列 , ,求滿足 值.

【答案】1)(2

【解析】試題分析:利用題目提供的 方面的關(guān)系,借助轉(zhuǎn)化為的關(guān)系,證明出滿足等差數(shù)列定義,利用等差數(shù)列通項公式求出,進而得出 成等差數(shù)列,寫出,根據(jù)恒成立,得出和公差的要求,比較的大小可采用比較法; 是以為首項, 為公比的等比數(shù)列,求出,根據(jù)題意求出的值.

試題解析:

1,得

,所以

,可知

所以數(shù)列是以為首項, 為公差的等差數(shù)列

的通項公式為

2證法一:設(shè)數(shù)列的公差為,則,

由(1)知,

因為,所以,即恒成立,

所以

又由,得

所以

所以,得證

證法二:設(shè)的公差為,假設(shè)存在自然數(shù),使得,

,即

因為,所以

所以

因為,所以存在,當時, 恒成立

這與“對任意的,都有”矛盾!

所以,得證

3由(1)知, 因為 為等比數(shù)列,且 ,

所以是以為首項, 為公比的等比數(shù)列

所以

,

因為,所以,所以

,所以,即(*)

, 時,(*)式成立;

時,設(shè),

,

所以

故滿足條件的的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在多面體中, 均為邊長為2的正方形, 為等腰直角三角形, ,且平面平面,平面平面.

(Ⅰ)求證:平面平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若是函數(shù)的一個極值點, 和1是的兩個零點,且,求的值;

(2)若,且的兩個極值點,求證:當時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費支出x與銷售額(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
如果y與x之間具有線性相關(guān)關(guān)系.

(1)作出這些數(shù)據(jù)的散點圖;
(2)求這些數(shù)據(jù)的線性回歸方程;
(3)預(yù)測當廣告費支出為9百萬元時的銷售額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某算法的流程圖如圖所示,運行相應(yīng)程序,輸出S的值是(

A.60
B.61
C.62
D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面是邊長是1的正方形,側(cè)棱PA與底面成45°的角,M,N,分別是AB,PC的中點;

(1)求證:MN∥平面PAD;
(2)求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2014年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下表所示.

組號

分組

頻數(shù)

頻率

第1組

[160,165)

5

0.050

第2組

[165,170)

n

0.350

第3組

[170,175)

30

p

第4組

[175,180)

20

0.200

第5組

[180,185]

10

0.100

合計

100

1.000


(1)求頻率分布表中n,p的值,并補充完整相應(yīng)的頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進入第二輪面試,則第3、4、5組每組各抽取多少名學(xué)生進入第二輪面試?
(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于, 兩點.

(1)求圓的直角坐標方程及弦的長;

(2)動點在圓上(不與, 重合),試求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,A、B、C三點滿足 = +
(1)求證:A、B、C三點共線;
(2)已知A(1,cosx),B(1+cosx,cosx)(0≤x≤ ),f(x)= ﹣(2m+ )| |的最小值為﹣ ,求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案