【題目】已知橢圓的離心率為,短軸長為4.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點作兩條直線,分別交橢圓,兩點(異于點).當直線的斜率之和為定值時,直線是否恒過定點?若是,求出定點坐標;若不是,請說明理由.

【答案】(1) (2)見解析

【解析】

I)根據(jù)橢圓的離心率和短軸長列方程組,解方程組求得的值,進而求得橢圓方程.II)當直線的斜率存在時,設(shè)出直線的方程,根據(jù)化簡得到表達式.聯(lián)立直線的方程和橢圓的方程,寫出韋達定理,并代入上面求得的表達式,化簡后可求得的關(guān)系式,帶回直線的方程,由此求得直線所過定點.當直線斜率不存在時,設(shè)直線的方程為,利用,求出的值,由此判斷此時直線所過定點.

(Ⅰ)由題意知:,,.

解得,,,所以橢圓方程為.

(Ⅱ)當直線的斜率存在時,設(shè)直線方程為,

,得,整理得

聯(lián)立,消去,由題意知二次方程有兩個不等實根.

,

代入.

整理得.

,∴,∴,即.

所以直線過定點.

當直線的斜率不存在時,設(shè)直線的方程為,,,其中.

,由,得,∴.

∴當直線的斜率不存在時,直線也過定點.

綜上所述,直線恒過定點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)求曲線在點處的切線方程;

(2)求曲線過點的切線方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學史上的一個偉大成就.楊輝三角中,第行的所有數(shù)字之和為,若去除所有為1的項,依次構(gòu)成數(shù)列,則此數(shù)列的前55項和為( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求的單調(diào)區(qū)間;

2)當,討論的零點個數(shù);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題:

①對立事件一定是互斥事件;②若A,B為兩個隨機事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對立事件.

其中正確命題的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協(xié)會的運動員組隊參加.現(xiàn)有來自甲協(xié)會的運動員3名,其中種子選手2名;乙協(xié)會的運動員5名,其中種子選手3.從這8名運動員中隨機選擇4人參加比賽.

1)設(shè)A為事件選出的4人中恰有2名種子選手,且這2名種子選手來自同一個協(xié)會,求事件發(fā)生的概率;

2)設(shè)為選出的4人中種子選手的人數(shù),求隨機變量的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在班級活動中,4名男生和3名女生站成一排表演節(jié)目:(寫出必要的數(shù)學式,結(jié)果用數(shù)字作答)

1)女生甲不能站在左端,女生乙不能站在右端,有多少種不同的排法?

2)甲乙丙三人按高低從左到右有多少種不同的排法?(甲乙丙三位同學身高互不相等)

3)現(xiàn)在有7個座位連成一排,僅安排4個男生就坐,怡好有兩個空座位相鄰的不同坐法共有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是正方形ABCD的外接圓,P在劣弧AB(P不與A、B重合),DP分別交AO、AB于點Q、T, 在點P處的切線交DA的延長線于點E,劣弧BC的中點為F.

(1):何時F、T、E三點共線?請說明理由.

(2)求比值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,圓.

(1)若拋物線的焦點在圓上,且和圓 的一個交點,求

(2)若直線與拋物線和圓分別相切于點,求的最小值及相應的值.

查看答案和解析>>

同步練習冊答案