【題目】已知函數(shù),其導(dǎo)函數(shù)為.
(1)當(dāng),求圖象在處的切線方程;
(2)設(shè)在定義域上是單調(diào)函數(shù),求得取值范圍;
(3)若的極大值和極小值分別為、,證明:.
【答案】(1);(2);(3)證明見解析;
【解析】
(1)先求導(dǎo)數(shù),由,即可得到的值可求出,進(jìn)而得到函數(shù)函數(shù)的解析式,得到,則函數(shù)在處的切線的方程可求出;
(2)在定義域上是單調(diào)函數(shù),可得或恒成立,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值即可,
(3)先設(shè),為方程的兩個實(shí)數(shù)根,由韋達(dá)定理得到,由于的極大值和極小值分別為,,可求出參數(shù)的范圍,將,進(jìn)而求出,即得證.
解:(1),
,
,
,即,
,
, ,
圖象在處的切線的方程為,即;
(2)在定義域上是單調(diào)函數(shù),
或恒成立,
即或,
因?yàn)?/span>不恒成立
所以在定義域上恒成立
設(shè),,
當(dāng)時,,函數(shù)單調(diào)遞增,
當(dāng)時,,函數(shù)單調(diào)遞減,
,,;
(3)設(shè),為方程的兩個實(shí)數(shù)根,
則,
由題意,得,解得;
則
,
令,則,
故當(dāng)時,,是減函數(shù),
則,
即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,點(diǎn)分別是棱,上的動點(diǎn),,直線與平面所成的角為,則△的面積的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,,點(diǎn)是的中點(diǎn).
求證:平面;
若直線與平面所成角為,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線: .
(Ⅰ)求曲線的普通方程和的直角坐標(biāo)方程;
(Ⅱ)若與相交于兩點(diǎn),設(shè)點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米至75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).某市環(huán)保局從市區(qū)2016年全年每天的監(jiān)測數(shù)據(jù)中,隨機(jī)抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示:(十位為莖,個位為葉)
(1)從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),求空氣質(zhì)量至少有一天達(dá)到一級的概率;
(2)以這15天的日均值來估算一年的空氣質(zhì)量情況,則一年(按360天計算)中大致有多少天的空氣質(zhì)量達(dá)到一級.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:x﹣y+3=0和l2:x+y+1=0的交點(diǎn)為A,過A且與x軸和y軸都相切的圓的方程為_____,動點(diǎn)B,C分別在l1和l2上,且|BC|=2,則過A,B,C三點(diǎn)的動圓掃過的區(qū)域的面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需把y=f(x)的圖象上所有的點(diǎn)( 。
A. 向右平移個單位長度 B. 向左平移個單位長度
C. 向右平移個單位長度 D. 向左平移個單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過點(diǎn).點(diǎn)M(3,m)在雙曲線上.
(1)求雙曲線的方程;
(2)求證:;
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,ABEF,矩形ABCD所在平面和圓O所在平面垂直,已知AB=2,EF=1.
(I)求證:平面DAF⊥平面CBF;
(II)若BC=1,求四棱錐F-ABCD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com