【題目】將編號為1,2,…,9的九個小球隨機(jī)放置在圓周的九個等分點(diǎn)上,每個等分點(diǎn)上各有一個小球.設(shè)圓周上所有相鄰兩球號碼之差的絕對值之和為S.求使S達(dá)到最小值的放法的概率.注:如果某種放法經(jīng)旋轉(zhuǎn)或鏡面反射后可與另一種放法重合,則認(rèn)為是相同的放法.

【答案】

【解析】

九個編號不同的小球放在圓周的九個等分點(diǎn)上,每點(diǎn)放一個相當(dāng)于九個不同元素在圓周上的一個圓形排列,共有種放法,考慮到翻轉(zhuǎn)因素,故本質(zhì)不同的放法有種.

下求使S達(dá)到最小值的放法數(shù):

在圓周上,從1到9有優(yōu)弧和劣弧兩條路徑,對其中任一條路徑,設(shè)是依次排列于這段弧上的小球號碼.

當(dāng)且僅當(dāng)時,上式等號成立

即每段弧上的小球編號均為由1到9遞增排列.

因此,.

由上,知當(dāng)每段弧上的球號確定之后,達(dá)到最小值的排序方案便唯一確定.

在1,2,…,9中,除1與9外,剩下七個球號2,3,…,8,將它們分為兩個子集,元素較少的一個子集共有種情形,每種情形對應(yīng)著圓周上使得S值達(dá)到最小的唯一排法,即有利事件總數(shù)為種,故所求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列說法:①對于線性回歸方程,變量增加一個單位時,平均增加5個單位;②在線性回歸模型中,相關(guān)指數(shù)越接近于1,則模型回歸效果越好;③兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)就越接近1;④互斥事件不一定是對立事件,對立事件一定是互斥事件;⑤演繹推理是從特殊到一般的推理,它的一般模式是“三段論”.其中說法錯誤的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足,且

(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜好體育運(yùn)動是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運(yùn)動

不喜好體育運(yùn)動

合計

男生

5

女生

10

合計

50

已知按喜好體育運(yùn)動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動的人數(shù)為6.

(1)請將上面的列聯(lián)表補(bǔ)充完整;

(2)能否在犯錯概率不超過的前提下認(rèn)為喜好體育運(yùn)動與性別有關(guān)?說明你的理由.

(參考公式: )

臨界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線和平面:①若直線與平面內(nèi)的無數(shù)條直線平行,則;②若直線與平面內(nèi)的任意一條直線都不平行,則直線和平面相交;③若,則直線與平面內(nèi)某些直線平行;④若,則存在平面內(nèi)的直線,使.以上結(jié)論中正確的個數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABCA1B1C1中,ABAC,EBC的中點(diǎn),求證:

(Ⅰ)平面AB1E⊥平面B1BCC1;

(Ⅱ)A1C//平面AB1E

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在一個周期內(nèi)的圖象如圖所示.

1)求函數(shù)的解析式.

2)求方程的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)若個棱長為正整數(shù)的正方體的體積之和等于2005,求的最小值,并說明理由;

(2)若個棱長為正整數(shù)的正方體的體積之和等于,求的最小值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn),若的兩焦點(diǎn)與其中一個頂點(diǎn)能構(gòu)成一個等邊三角形.

(1)求的方程.

(2)已知過的兩條直線,(斜率都存在)與的右半部分(軸右側(cè))分別相交于,兩點(diǎn),且的面積為,試判斷,的斜率之積是否為定值?若是,求出定值;若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案