已知函數(shù)
(1)求的最小正周期及單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值與最小值的和為,求的值.

(1);(2)

解析試題分析:(1)先逆用正弦的二倍角公式和降冪公式,并將函數(shù)解析式化為的形式,再利用確定周期,利用復(fù)合函數(shù)的單調(diào)性求遞減區(qū)間;(2)由,確定的范圍,然后結(jié)合函數(shù)的圖象確定函數(shù)的最大值與最小值,進而根據(jù)最大值與最小值的和為列方程求.
試題解析:(1)==,∴,由,解得,∴的單調(diào)遞減區(qū)間為;
(2)∵,∴,∴,,∴
.
考點:1、三角函數(shù)的周期;2、三角函數(shù)的單調(diào)區(qū)間;3、三角函數(shù)的最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知a,b,c分別為ABC的三個內(nèi)角A,B,C的對邊,向量=(sinA,1),=(cosA,),且//
(I)求角A的大小;
(II)若a=2,b=2,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=2cos2x―sin(2x―).
(Ⅰ)求函數(shù)的最大值,并寫出取最大值時x的取值集合;
(Ⅱ)已知△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=,b+c=2,求實數(shù)a的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知 的內(nèi)角A、B、C所對的邊為, , ,且所成角為.
(Ⅰ)求角B的大;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,且.
(1)當時,求
(2)設(shè)函數(shù),求函數(shù)的最值及相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量為共線向量,且.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,設(shè)函數(shù),.
(Ⅰ)求的最小正周期與最大值;
(Ⅱ)在中, 分別是角的對邊,若的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為第二象限的角,為第三象限的角,。
(1)求的值;
(2)求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求sin210°+cos240°+sin10°cos40°的值.

查看答案和解析>>

同步練習冊答案