【題目】已知函數(shù) .
(1)若,判斷函數(shù)的單調(diào)性;
(2)討論函數(shù)的極值,并說(shuō)明理由.
【答案】(1) 在上遞增. (2)見(jiàn)解析
【解析】
(1)將k=1代入表達(dá)式,對(duì)函數(shù)求導(dǎo),通過(guò)判斷導(dǎo)函數(shù)的正負(fù)得到原函數(shù)的單調(diào)性;(2)對(duì)導(dǎo)函數(shù)繼續(xù)求導(dǎo),研究的單調(diào)性以及零點(diǎn)情況進(jìn)而得到原函數(shù)的極值點(diǎn)的情況.
(1)當(dāng)時(shí),,,
設(shè),
則,當(dāng)時(shí),,遞減,
當(dāng)時(shí),,
遞增,則,即,所以在上遞增.
(2),,
設(shè),,
當(dāng)時(shí),,遞減;當(dāng)時(shí),,遞增;
則;
若,即時(shí),恒成立,即,則在遞增;
若,即時(shí),,
一方面:,而,即,
由零點(diǎn)存在定理知在上有一個(gè)零點(diǎn),設(shè)為;
另一方面:,設(shè),(),,
則在遞增,則,即,
由零點(diǎn)存在定理知在有一個(gè)零點(diǎn),設(shè)為;
于是,當(dāng)時(shí),,遞增;
當(dāng)時(shí),,遞減;
當(dāng)時(shí),,遞增;故此時(shí)函數(shù)有兩個(gè)極值點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在統(tǒng)計(jì)學(xué)中,同比增長(zhǎng)率一般是指和去年同期相比較的增長(zhǎng)率,環(huán)比增長(zhǎng)率一般是指和前一時(shí)期相比較的增長(zhǎng)率.2020年2月29日人民網(wǎng)發(fā)布了我國(guó)2019年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)圖表,根據(jù)2019年居民消費(fèi)價(jià)格月度漲跌幅度統(tǒng)計(jì)折線圖,下列說(shuō)法正確的是( )
A.2019年我國(guó)居民每月消費(fèi)價(jià)格與2018年同期相比有漲有跌
B.2019年我國(guó)居民每月消費(fèi)價(jià)格中2月消費(fèi)價(jià)格最高
C.2019年我國(guó)居民每月消費(fèi)價(jià)格逐月遞增
D.2019年我國(guó)居民每月消費(fèi)價(jià)格3月份較2月份有所下降
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),若不等式恒成立,求整數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以昆明、玉溪為中心的滇中地區(qū),冬無(wú)嚴(yán)寒、夏無(wú)酷暑,世界上主要的鮮切花品種在這里都能實(shí)現(xiàn)周年規(guī);a(chǎn).某鮮花批發(fā)店每天早晨以每支2元的價(jià)格從鮮切花生產(chǎn)基地購(gòu)入某種玫瑰,經(jīng)過(guò)保鮮加工后全部裝箱(每箱500支,平均每支玫瑰的保鮮加工成本為1元),然后以每箱2000元的價(jià)格整箱出售.由于鮮花的保鮮特點(diǎn),制定了如下促銷策略:若每天下午3點(diǎn)以前所購(gòu)進(jìn)的玫瑰沒(méi)有售完,則對(duì)未售出的玫瑰以每箱1200元的價(jià)格降價(jià)處理.根據(jù)經(jīng)驗(yàn),降價(jià)后能夠把剩余玫瑰全部處理完畢,且當(dāng)天不再購(gòu)進(jìn)該種玫瑰,由于庫(kù)房限制每天最多加工6箱.
(1)若某天該鮮花批發(fā)店購(gòu)入并加工了6箱該種玫瑰,在下午3點(diǎn)以前售出4箱,且被6位不同的顧客購(gòu)買(mǎi).現(xiàn)從這6位顧客中隨機(jī)選取2人贈(zèng)送優(yōu)惠卡,則恰好一位是以2000元價(jià)格購(gòu)買(mǎi)的顧客,另一位是以1200元價(jià)格購(gòu)買(mǎi)的顧客的概率是多少?
(2)該鮮花批發(fā)店統(tǒng)計(jì)了100天內(nèi)該種玫瑰在每天下午3點(diǎn)以前的銷售量(單位:箱),統(tǒng)計(jì)結(jié)果如下表所示(視頻率為概率):
/箱 | 4 | 5 | 6 |
頻數(shù) | 30 |
①估計(jì)接下來(lái)的一個(gè)月(30天)內(nèi)該種玫瑰每天下午3點(diǎn)以前的銷售量不少于5箱的天數(shù)是多少?
②若批發(fā)店每天在購(gòu)進(jìn)5箱數(shù)量的玫瑰時(shí)所獲得的平均利潤(rùn)最大(不考慮其他成本),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,側(cè)棱垂直于底面, 分別是的中點(diǎn).
(1)求證: 平面平面;
(2)求證: 平面;
(3)求三棱錐體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,,分別是橢圓的左、右焦點(diǎn),離心率,過(guò)橢圓右焦點(diǎn)的直線與橢圓交于,兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說(shuō)明理由;
(Ⅲ)設(shè)點(diǎn)是一個(gè)動(dòng)點(diǎn),若直線的斜率存在,且為中點(diǎn),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年來(lái)我國(guó)電子商務(wù)行業(yè)發(fā)展迅猛,2016年元旦期間,某購(gòu)物平臺(tái)的銷售業(yè)績(jī)高達(dá)918億人民幣,與此同時(shí),相關(guān)管理部門(mén)推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)完成商品和服務(wù)評(píng)價(jià)的列聯(lián)表,并說(shuō)明是否可以在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的5次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量.
①求對(duì)商品和服務(wù)全好評(píng)的次數(shù)的分布列(概率用組合數(shù)算式表示);
②求的數(shù)學(xué)期望和方差.
參考數(shù)據(jù)及公式如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)點(diǎn)的極坐標(biāo)為.
(1)求曲線的極坐標(biāo)方程;
(2)若過(guò)點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com