【題目】將邊長為2正方形ABCD沿對角線BD折成直二面角A﹣BD﹣C,有如下四個判斷:
①AC⊥BD
②AB與平面BCD所成60°角
③△ABC是等邊三角形
④若A、B、C、D四點在同一個球面上,則該球的表面積為8π
其中正確判斷的序號是 .
【答案】①③④
【解析】解:①取BD中點E,連結(jié)AE,CE,則AE⊥BD,CE⊥BD,∴BD⊥平面ACE,∴AC⊥BD.故①正確.
②∠ABD為AB與面BCD所成的角為45°,故②錯誤.
③∵折疊前正方形的邊長為2,∴BD=2 , ∴AE=CE= .
∵平面ABD⊥平面BCD,∴AE⊥平面BCD,∴AE⊥CE,∴AC==2.
∴△ABC是等邊三角形,故③正確.
④∵折疊前正方形的邊長為2,則BD=2 ,
∴EA=EB=EC=ED= .
若A、B、C、D四點在同一個球面上,
則球的半徑r= ,
則該球的表面積S=4π()2=8π,故④正確,
所以答案是:①③④
【考點精析】解答此題的關鍵在于理解命題的真假判斷與應用的相關知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
科目:高中數(shù)學 來源: 題型:
【題目】設命題p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足 .
(Ⅰ)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.
(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;
(2)現(xiàn)往袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和不大于4的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義向量 =(a,b)的“相伴函數(shù)”為f(x)=asinx+bcosx,函數(shù)f(x)=asinx+bcosx的“相伴向量”為 =(a,b)(其中O為坐標原點).記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為S.
(1)設g(x)=3sin(x+ )+4sinx,求證:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)為圓C:(x﹣2)2+y2=1上一點,向量 的“相伴函數(shù)”f(x)在x=x0處取得最大值.當點M在圓C上運動時,求tan2x0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當x= 時,函數(shù)f(x)取得最小值,則下列結(jié)論正確的是( )
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖莖葉圖記錄了甲、乙兩組各四名同學的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以Z表示.
(1)如果Z=8,求乙組同學植樹棵數(shù)的平均數(shù)和方差;
(2)如果Z=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數(shù)為19的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,左、右頂點分別為為直徑的圓O過橢圓E的上頂點D,直線DB與圓O相交得到的弦長為.設點,連接PA交橢圓于點C,坐標原點為O.
(I)求橢圓E的方程;
(II)若三角形ABC的面積不大于四邊形OBPC的面積,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com