【題目】已知橢圓的左、右焦點分別為,左、右頂點分別為為直徑的圓O過橢圓E的上頂點D,直線DB與圓O相交得到的弦長為.設點,連接PA交橢圓于點C,坐標原點為O.

(I)求橢圓E的方程;

(II)若三角形ABC的面積不大于四邊形OBPC的面積,求的最小值.

【答案】(I);(II).

【解析】試題分析:(I)由直線與圓相交,利用垂徑定理列方程求解即可;

(Ⅱ)分別求得三角形ABC的面積和四邊形OBPC的面積,由題意即可求得|t|的最小值.

試題解析:

)因為以為直徑的圓過點,所以,則圓的方程為

,所以,直線的方程為,直線與圓相交得到的弦長為,則,所以, ,

所以橢圓的方程為.

(Ⅱ)由已知得: ,橢圓方程為,

設直線的方程為,由

整理得,

解得: , ,則點的坐標是,

故直線的斜率為,由于直線的斜率為,

所以 ,所以.

所以

,所以,

整理得, ,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某數(shù)學教師對所任教的兩個班級各抽取20名學生進行測試,分數(shù)分布如表:

分數(shù)區(qū)間

甲班頻率

乙班頻率

[0,30)

0.1

0.2

[30,60)

0.2

0.2

[60,90)

0.3

0.3

[90,120)

0.2

0.2

[120,150)

0.2

0.1

(Ⅰ)若成績120分以上(含120分)為優(yōu)秀,求從乙班參加測試的90分以上(含90分)的同學中,隨機任取2名同學,恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:在犯錯概率小于0.1的前提下,你是否有足夠的把握認為學生的數(shù)學成績是否優(yōu)秀與班級有關系?

優(yōu)秀

不優(yōu)秀

總計

甲班

乙班

總計

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)如果對任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設A={0,1,2,4},B={ ,0,1,2,6,8},則下列對應關系能構(gòu)成A到B的映射的是(
A.f:x→x3﹣1
B.f:x→(x﹣1)2
C.f:x→2x1
D.f:x→2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a滿足x+lgx=4,b滿足x+10x=4,函數(shù)f(x)= ,則關于x的方程f(x)=x的解的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)y=f(x),如果存在區(qū)間[m,n],同時滿足下列條件:
1)f(x)在[m,n]上是單調(diào)的;
2)當定義域是[m,n]時,f(x)的值域也是[m,n],則稱[m,n]是該函數(shù)的“和諧區(qū)間”.若函數(shù)f(x)= (a>0)存在“和諧區(qū)間”,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 的定義域為集合A,函數(shù)g(x)=lg(﹣x2+2x+m)的定義域為集合B.
(1)當m=3時,求A∩(RB)
(2)若A∩B={x|﹣1<x<4},求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= cosx(sinx+cosx).
(1)若0<α< ,且sinα= ,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,已知
(1)求sinB的值;
(2)求c的值.

查看答案和解析>>

同步練習冊答案