【題目】如圖,在平面直角坐標(biāo)系中,橢圓:上的動(dòng)點(diǎn)到一個(gè)焦點(diǎn)的最遠(yuǎn)距離與最近距離分別是與,的左頂點(diǎn)為與軸平行的直線與橢圓交于、兩點(diǎn),過、兩點(diǎn)且分別與直線、垂直的直線相交于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明點(diǎn)在一條定直線上運(yùn)動(dòng),并求出該直線的方程;
(3)求面積的最大值.
【答案】(1);(2)證明見解析,;(3).
【解析】
(1)根據(jù)橢圓的性質(zhì)可以由橢圓:上的動(dòng)點(diǎn)到一個(gè)焦點(diǎn)的最遠(yuǎn)距離與最近距離分別是與得到兩個(gè)方程,解方程即可求出橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),,顯然直線,,,的斜率都存在,設(shè)為,,,,求出它們的表達(dá)式,求出直線,的方程,消去,最后可以證明點(diǎn)在一條定直線上運(yùn)動(dòng);
(3)由(2)得點(diǎn)的縱坐標(biāo),求出的表達(dá)式,再利用均值不等式求出面積的最大值.
(1)因?yàn)闄E圓:上的動(dòng)點(diǎn)到一個(gè)焦點(diǎn)的最遠(yuǎn)距離與最近距離分別是與,所以有,
的標(biāo)準(zhǔn)方程為.
(2)設(shè),,顯然直線,,,的斜率都存在,設(shè)為,,,,則,,,,所以直線,的方程為:,,消去得,化簡得,故點(diǎn)在定直線上運(yùn)動(dòng).
(3)由(2)得點(diǎn)的縱坐標(biāo)為,
又,所以,則,
所以點(diǎn)到直線的距離為,
將代入得,
所以面積
,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故時(shí),面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面是邊長為4的等邊三角形,,為的中點(diǎn).
(1)證明:平面.
(2)若是等邊三角形,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),試討論方程的解的個(gè)數(shù);
(2)若曲線和上分別存在點(diǎn),,使得是以原點(diǎn)為直角頂點(diǎn)的直角三角形,且斜邊的中點(diǎn)在軸上,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱柱中,側(cè)棱底面,,,,,為棱的中點(diǎn).
(1)證明:;
(2)求二面角的正弦值;
(3)設(shè)點(diǎn)在線段上,且直線與平面所成角的正弦值是,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
討論函數(shù)與的圖象的交點(diǎn)個(gè)數(shù);
若函數(shù)與的圖象無交點(diǎn),設(shè)直線與的數(shù)和的圖象分別交于點(diǎn)P,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)滿足,記點(diǎn)的軌跡為.斜率為的直線過點(diǎn),且與軌跡相交于兩點(diǎn).
(1)求軌跡的方程;
(2)求斜率的取值范圍;
(3)在軸上是否存在定點(diǎn),使得無論直線繞點(diǎn)怎樣轉(zhuǎn)動(dòng),總有成立?如果存在,求出定點(diǎn);如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和零點(diǎn);
(2)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形的邊長為,、、分別為各邊的中點(diǎn),將△沿、、折疊,使、、三點(diǎn)重合,構(gòu)成三棱錐.
(1)求平面與底面所成二面角的余弦值;
(2)設(shè)點(diǎn)、分別在、上, (為變量) ;
①當(dāng)為何值時(shí),為異面直線與的公垂線段? 請證明你的結(jié)論
②設(shè)異面直線與所成的角為,異面直線與所成的角為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在正實(shí)數(shù)x,y使得x2+y2(lny-lnx)-axy=0(a∈R)成立,則a的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com