【題目】已知正方體的棱長為,點分別棱樓的中點,下列結(jié)論中正確的是(

A.四面體的體積等于B.平面

C.平面D.異面直線所成角的正切值為

【答案】BD

【解析】

根據(jù)直線與平面的位置關(guān)系可知不正確;根據(jù)線面垂直的判定定理可知正確;根據(jù)空間向量夾角的坐標公式可知正確;用正方體體積減去四個正三棱錐的體積可知不正確.

解:延長分別與,的延長線交于,,連接,設的延長線交于,連接,交,連,,,, 相交,故與平面相交,所以不正確;

,且相交,所以平面,故正確;

為原點,,,分別為,軸建立空間直角坐標系,利用空間向量的夾角可得異面直線的夾角的正切值為,故正確;

四面體的體積等于正方體的體積減去四個正三棱錐的體積,即為,故不正確.

故選:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】春節(jié)過后,甲、乙、丙三人談論到有關(guān)部電影,,的情況.

甲說:我沒有看過電影,但是有部電影我們?nèi)齻都看過;

乙說:三部電影中有部電影我們?nèi)酥兄挥幸蝗丝催^;

丙說:我和甲看的電影有部相同,有部不同.

假如他們都說的是真話,則由此可判斷三部電影中乙看過的部數(shù)是(

A.B.C.D.部或

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽數(shù)之間的關(guān)系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了明天晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“君不小于25”的概率;

(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5填中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程,.

(參考公式:,).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電動摩托車的續(xù)航里程,是指電動摩托車在蓄電池滿電量的情況下一次能行駛的最大距離.為了解A,B兩個不同型號電動摩托車的續(xù)航里程,現(xiàn)從某賣場庫存電動摩托車中隨機抽取A,B兩個型號的電動摩托車各5臺,在相同條件下進行測試,統(tǒng)計結(jié)果如下:

電動摩托車編號

1

2

3

4

5

A型續(xù)航里程(km

120

125

122

124

124

B型續(xù)航里程(km

118

123

127

120

a

已知A,B兩個型號被測試電動摩托車續(xù)航里程的平均值相等.

1)求a的值;

2)求A型號被測試電動摩托車續(xù)航里程標準差的大;

3)從被測試的電動摩托車中隨機抽取A,B型號電動摩托車各1臺,求至少有1臺的續(xù)航里程超過122km的概率.

(注:n個數(shù)據(jù),的方差,其中為數(shù)據(jù)的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了個網(wǎng)箱,測量各水箱產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下圖所示.

1)若用頻率視為概率,記表示事件舊養(yǎng)殖法的箱產(chǎn)量低于kg,求事件的概率;

2)填寫以下列聯(lián)表,并根據(jù)此判斷是否有的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān)?

箱產(chǎn)量kg

箱產(chǎn)量kg

合計

舊養(yǎng)殖方法

新養(yǎng)殖方法

合計

3)根據(jù)箱產(chǎn)量頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計值(精確到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點到拋物線Cy2=2px準線的距離為2

(Ⅰ)求C的方程及焦點F的坐標;

(Ⅱ)設點P關(guān)于原點O的對稱點為點Q,過點Q作不經(jīng)過點O的直線與C交于兩點AB,直線PA,PB,分別交x軸于M,N兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知點為拋物線的焦點,點在拋物線上,且

)求拋物線的方程;

)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱柱中,平面平面,,點為棱的中點,點為線段上的動點.

1)求證:;

2)若直線與平面所成角為,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)絡看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機器故障進行查找詢問、診斷治療、檢查修復的一種新興的看病方式.因此,實地看病與網(wǎng)絡看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機構(gòu)調(diào)研了患者對網(wǎng)絡看病,實地看病的滿意程度,在每種看病方式的患者中各隨機抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡看病,實地看病兩種方式進行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:

1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡看病、實地看病那種方式的滿意度更高?并說明理由;

2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:

滿意

不滿意

總計

網(wǎng)絡看病

實地看病

總計

并根據(jù)列聯(lián)表判斷能否有的把握認為患者看病滿意度與看病方式有關(guān)?

3)從網(wǎng)絡看病的評價“滿意”的人中隨機抽取2人,求這2人平分都低于90分的概率.

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案