【題目】博鰲亞洲論壇2015年會員大會于3月27日在海南博鰲舉辦,大會組織者對招募的100名服務(wù)志愿者培訓(xùn)后,組織一次 知識競賽,將所得成績制成如右頻率分布直方圖(假定每個分?jǐn)?shù)段內(nèi)的成績均勻分布),組織者計劃對成績前20名的參賽者進行獎勵.

(1)試確定受獎勵的分?jǐn)?shù)線;
(2)從受獎勵的20人中利用分層抽樣抽取5人,再從抽取的5人中抽取2人在主會場服務(wù),試求2人成績都在90分以上的概率.

【答案】
(1)解:由頻率分布直方圖知,競賽成績在 分的人數(shù)為 ,競賽成績在 的人數(shù)為 ,故受獎勵分?jǐn)?shù)線在 之間,設(shè)受獎勵分?jǐn)?shù)線為 ,則 ,解得 ,故受獎勵分?jǐn)?shù)線為86.
(2)解:由(1)知,受獎勵的20人中,分?jǐn)?shù)在 的人數(shù)為8,分?jǐn)?shù)在 的人數(shù)為12,利用分層抽樣,可知分?jǐn)?shù)在 的抽取2人,分?jǐn)?shù)在 的抽取3人,設(shè)分?jǐn)?shù)在 的2人分別為 ,分?jǐn)?shù)在 的3人分別為 ,所有的可能情況有 滿足條件的情況有 ,所求的概率為
【解析】(1)根據(jù)概率直方圖可求出小長方體面積對應(yīng)的概率,結(jié)合題意即可求出受獎勵分?jǐn)?shù)線為86。(2)利用分層抽樣結(jié)合列舉法分別求出滿足題意的人數(shù)的所有的可能情況再利用概率的定義代入數(shù)值求出結(jié)果即可。
【考點精析】根據(jù)題目的已知條件,利用分層抽樣和頻率分布直方圖的相關(guān)知識可以得到問題的答案,需要掌握先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本;頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的最小正周期為 ,將函數(shù) 的圖象向左平移 個單位長度,再向下平移 個單位長度,得到函數(shù) 的圖象.
(Ⅰ)求函數(shù) 的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角 中,角 的對邊分別為 .若 , ,求 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖程序框圖是為了求出滿足3n﹣2n>1000的最小偶數(shù)n,那么在 兩個空白框中,可以分別填入( 。

A.A>1000和n=n+1
B.A>1000和n=n+2
C.A≤1000和n=n+1
D.A≤1000和n=n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義域為R的周期函數(shù),最小正周期為2,且f(1+x)=f(1-x),當(dāng)-1≤x≤0時,f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數(shù)f(x)在區(qū)間[-1,2]上的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系 中,圓 ,圓
(Ⅰ)在以 為極點, 軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓 的極坐標(biāo)方程,并求出圓 的交點坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求出 的公共弦的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:①已知 ,“ ”是“ ”的充分條件;
②已知平面向量 , 是“ ”的必要不充分條件;
③已知 ,“ ”是“ ”的充分不必要條件;
④命題 ,使 ”的否定為 ,都有 ”.其中正確命題的個數(shù)是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強高考與高中學(xué)習(xí)的關(guān)聯(lián)度,考生總成績由統(tǒng)一高考的語文、數(shù)學(xué)、外語3個科目成績和高中學(xué)業(yè)水平考試3個科目成績組成.保持統(tǒng)一高考的語文、數(shù)學(xué)、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機會.計入總成績的高中學(xué)業(yè)水平考試科目,由考生根據(jù)報考高校要求和自身特長,在思想政治、歷史、地理、物理、化學(xué)、生物、信息技術(shù)七科目中自主選擇三科.

(1)某高校某專業(yè)要求選考科目物理,考生若要報考該校該專業(yè),則有多少種選考科目的選擇;

(2)甲、乙、丙三名同學(xué)都選擇了物理、化學(xué)、歷史組合,各學(xué)科成績達到二級的概率都是0.8,且三人約定如果達到二級不參加第二次考試,達不到二級參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018福建福州市一中高三上學(xué)期期中考試已知橢圓 的右焦點為,在橢圓上,且軸交點恰為中點

I求橢圓的方程;

II作兩條互相垂直的直線,分別交橢圓于點.求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓 的離心率是,且直線 被橢圓截得的弦長為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與圓 相切:

(i)求圓的標(biāo)準(zhǔn)方程;

(ii)若直線過定點,與橢圓交于不同的兩點、,與圓交于不同的兩點、,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案