【題目】若存在滿(mǎn)足下列三個(gè)條件的集合,,,則稱(chēng)偶數(shù)為“萌數(shù)”:
①集合,,為集合的個(gè)非空子集,,,兩兩之間的交集為空集,且;②集合中的所有數(shù)均為奇數(shù),集合中的所有數(shù)均為偶數(shù),所有的倍數(shù)都在集合中;③集合,,所有元素的和分別為,,,且.注:.
(1)判斷:是否為“萌數(shù)”?若為“萌數(shù)”,寫(xiě)出符合條件的集合,,,若不是“萌數(shù)”,說(shuō)明理由.
(2)證明:“”是“偶數(shù)為萌數(shù)”成立的必要條件.
【答案】(1)是,,,;(2)證明見(jiàn)解析;
【解析】
(1)根據(jù)條件先確定,再根據(jù)和確定以及,最后確定C;
(2)說(shuō)明時(shí)不可能成立,即可證得結(jié)果
(1) 因?yàn)樗?/span>的倍數(shù)都在集合中,所以
因?yàn)?/span>,即為“萌數(shù)”, ,,;
(2)當(dāng)時(shí),因?yàn)樗?/span>的倍數(shù)都在集合中,所以
而,即時(shí),偶數(shù)不為萌數(shù);
當(dāng)時(shí),因?yàn)?/span>,所以時(shí),偶數(shù)不為萌數(shù);
因此偶數(shù)為萌數(shù)時(shí),,即“”是“偶數(shù)為萌數(shù)”成立的必要條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知非空集合滿(mǎn)足:若,則必有,問(wèn)這樣的集合S有______個(gè);請(qǐng)將該問(wèn)題推廣到一般情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 平面平面,.
(1)求證:平面;
(2)求直線(xiàn)與平面所成角的正弦值;
(3)在棱上是否存在點(diǎn),使得平面?若存在, 求的值;若不存在, 說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)觀(guān)眾對(duì)大型綜藝活動(dòng)《中國(guó)好聲音》的收視情況,隨機(jī)抽取了100名觀(guān)眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀(guān)眾收看該節(jié)目的場(chǎng)數(shù)與所對(duì)應(yīng)的人數(shù)表:
場(chǎng)數(shù) | 9 | 10 | 11 | 12 | 13 | 14 |
人數(shù) | 10 | 18 | 22 | 25 | 20 | 5 |
將收看該節(jié)目場(chǎng)次不低于13場(chǎng)的觀(guān)眾稱(chēng)為“歌迷”,已知“歌迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?
非歌迷 | 歌迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(2)將收看該節(jié)目所有場(chǎng)次(14場(chǎng))的觀(guān)眾稱(chēng)為“超級(jí)歌迷”,已知“超級(jí)歌迷”中有2名女性,若從“超級(jí)歌迷”中任意選取2人,求至少有1名女性觀(guān)眾的概率.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列對(duì)任意滿(mǎn)足,下面給出關(guān)于數(shù)列的四個(gè)命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心為,且直線(xiàn)與圓相切,設(shè)直線(xiàn)的方程為,若點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)作圓的切線(xiàn),切點(diǎn)為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若,試求點(diǎn)的坐標(biāo);
(3)若點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作直線(xiàn)與圓交于兩點(diǎn),當(dāng)時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】單位計(jì)劃組織55名職工進(jìn)行一種疾病的篩查,先到本單位醫(yī)務(wù)室進(jìn)行血檢,血檢呈陽(yáng)性者再到醫(yī)院進(jìn)一步檢測(cè).已知隨機(jī)一人血檢呈陽(yáng)性的概率為 1% ,且每個(gè)人血檢是否呈陽(yáng)性相互獨(dú)立.
(Ⅰ) 根據(jù)經(jīng)驗(yàn),采用分組檢測(cè)法可有效減少工作量,具體操作如下:將待檢人員隨機(jī)等分成若干組,先將每組的血樣混在一起化驗(yàn),若結(jié)果呈陰性,則可斷定本組血樣全部為陰性,不必再化驗(yàn);若結(jié)果呈陽(yáng)性,則本組中至少有一人呈陽(yáng)性,再逐個(gè)化驗(yàn).
現(xiàn)有兩個(gè)分組方案:
方案一: 將 55 人分成 11 組,每組 5 人;
方案二:將 55 人分成5組,每組 11 人;
試分析哪一個(gè)方案工作量更少?
(Ⅱ) 若該疾病的患病率為 0.4% ,且患該疾病者血檢呈陽(yáng)性的概率為99% ,該單位有一職工血檢呈陽(yáng)性,求該職工確實(shí)患該疾病的概率.(參考數(shù)據(jù): )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com