【題目】某創(chuàng)業(yè)者計(jì)劃在某旅游景區(qū)附近租賃一套農(nóng)房發(fā)展成特色農(nóng)家樂(lè),為了確定未來(lái)發(fā)展方向此創(chuàng)業(yè)者對(duì)該景區(qū)附近五家農(nóng)家樂(lè)跟蹤調(diào)查了100天,這五家農(nóng)家樂(lè)的收費(fèi)標(biāo)準(zhǔn)互不相同得到的統(tǒng)計(jì)數(shù)據(jù)如下表,x為收費(fèi)標(biāo)準(zhǔn)(單位:/),t為入住天數(shù)(單位:),以頻率作為各自的入住率,收費(fèi)標(biāo)準(zhǔn)x入住率”y的散點(diǎn)圖如圖

x

100

150

200

300

450

t

90

65

45

30

20

(1)若從以上五家農(nóng)家樂(lè)中隨機(jī)抽取兩家深人調(diào)查,記入住率超過(guò)0.6的農(nóng)家樂(lè)的個(gè)數(shù),求的概率分布列

(2)zlnx,由散點(diǎn)圖判斷哪個(gè)更合適于此模型(給出判斷即可不必說(shuō)明理由)?并根據(jù)你的判斷結(jié)果求回歸方程(a,的結(jié)果精確到0.1)

(3)根據(jù)第(2)問(wèn)所求的回歸方程,試估計(jì)收費(fèi)標(biāo)準(zhǔn)為多少時(shí),100天銷售額L最大?(100天銷售額L100×入住率×收費(fèi)標(biāo)準(zhǔn)x)

參考數(shù)據(jù), ,

【答案】(1) 見(jiàn)解析;(2) 更適合于此模型;;(3) 當(dāng)收費(fèi)標(biāo)準(zhǔn)約為150(/)時(shí),100天銷售額L最大

【解析】

1的所有可能取值為0,1,2,利用超幾何分布求得概率,則分布列可求;(2)由散點(diǎn)圖可知,更適合于此模型,分別求得,則回歸方程可求;(3)依題意,再由導(dǎo)數(shù)求最值即可.

(1)的所有可能取值為0,1,2

P(=0)=

的分布列是

0

1

2

(2)由散點(diǎn)圖可知更適合于此模型

依題意,

所求的回歸方程為

(3)依題意,,

,

,得,,由,得,

上遞增,在上遞減

當(dāng)時(shí),取到最大值

∴當(dāng)收費(fèi)標(biāo)準(zhǔn)約為150(元/日)時(shí),100天銷售額L最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)當(dāng)b=0時(shí),求函數(shù)的極小值;

2)若已知b>1且函數(shù)與直線y=-x相切,求b的值;

3)在(2)的條件下,函數(shù)與直線y=-x+m有三個(gè)公共點(diǎn),求m的取值范圍.(直接寫(xiě)出答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓過(guò)右焦點(diǎn)的弦為、過(guò)原點(diǎn)的弦為,若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y24x焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),交其準(zhǔn)線于點(diǎn)C,且A、C位于x軸同側(cè),若|AC|2|AF|,則|BF|等于( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是( )

A. 命題,則的逆命題是真命題

B. 命題存在的否定是:任意

C. 命題“pq”為真命題,則命題“p”和命題“q”均為真命題

D. 已知,則的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)討論的單調(diào)性;

)若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義域?yàn)榧?/span>上的函數(shù)滿足:①;②);③、、成等比數(shù)列;這樣的不同函數(shù)的個(gè)數(shù)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面為矩形的四棱錐中,平面平面.

1)證明:;

2)若,,設(shè)中點(diǎn),求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo),曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若為曲線上的動(dòng)點(diǎn),求中點(diǎn)到直線的距離最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案