【題目】若數(shù)列滿足:對于,都有為常數(shù)),則稱數(shù)列是公差為隔項等差數(shù)列.

)若,是公差為8隔項等差數(shù)列,求的前項之和;

)設(shè)數(shù)列滿足:,對于,都有

求證:數(shù)列隔項等差數(shù)列,并求其通項公式;

設(shè)數(shù)列的前項和為,試研究:是否存在實數(shù),使得成等比數(shù)列(?若存在,請求出的值;若不存在,請說明理由.

【答案】為偶數(shù)時,

為奇數(shù)時,

【解析】

試題()由新定義知:前項之和為兩等差數(shù)列之和,一個是首項為3,公差為8的等差數(shù)列前8項和,另一個是首項為17,公差為8的等差數(shù)列前7項和,所以前項之和根據(jù)新定義知:證明目標為,

,相減得,當為奇數(shù)時,依次構(gòu)成首項為a,公差為2的等差數(shù)列,, 為偶數(shù)時,依次構(gòu)成首項為2-a,公差為2的等差數(shù)列,先求和:當為偶數(shù)時,;當為奇數(shù)時,故當時,,, ,則,解得

試題解析:()易得數(shù)列

項之和

)(A

B

BA)得).

所以,為公差為2隔項等差數(shù)列.

為偶數(shù)時,,

為奇數(shù)時,;

為偶數(shù)時,;

為奇數(shù)時,

故當時,,,

,則,解得

所以存在實數(shù),使得成等比數(shù)列(

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某校甲、乙、丙三個年級的學生志愿者人數(shù)分別是240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學去某敬老院參加獻愛心活動。

(1)應(yīng)從甲、乙、丙三個年級的學生志愿者中分別抽取多少人?

(2)設(shè)抽出的7名同學分別用A,B,C,D,E,F(xiàn),G表示,現(xiàn)從中隨機抽取2名同學承擔敬老院的衛(wèi)生工作,求事件M“抽取的2名同學來自同一年級”發(fā)生的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心在原點,半徑為,若圓與坐標軸的交點為頂點的四邊形是一個面積為的正方形(記為)設(shè)點軸的負半軸上,以點、和點 為頂點的三角形的面積為.

1)求圓的半徑及點的坐標;

2)若過點的直線與圓相交于兩點,當線段的中點落在正方形內(nèi)(包括邊界)時,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近期,某公交公司分別推出支付寶和徽信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表l所示:

1

根據(jù)以上數(shù)據(jù),繪制了如右圖所示的散點圖.

(1)根據(jù)散點圖判斷,在推廣期內(nèi),(c,d均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次y關(guān)于活動推出天數(shù)x的回歸方程類型?(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),求y關(guān)于x的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次;

參考數(shù)據(jù):

其中

參考公式:

對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】湖南省第九屆少數(shù)民族傳統(tǒng)體育運動會于20181016日至20日在湘西龍山舉行.運動會期間,湖南省14個市州和17個民族縣市區(qū)組成的31個代表團2631人參加,來自土家、苗、瑤、侗、白、維吾爾、壯、回、漢等22個民族的1991名運動員分別參加陀螺、射弩、秋千、高腳、板鞋、蹴球、鍵球、押加、民族健身操及表演項目比賽,是湖南省歷屆民族運動會規(guī)模最大、規(guī)格最高、參賽人數(shù)最多的一次.對本次運動會中320名志愿者的年齡抽樣調(diào)查統(tǒng)計后得到樣本頻率分布直方圖(如圖),但是年齡組為的數(shù)據(jù)不慎丟失,請完成下面的解答.

1)將頻率分布直方圖補充完整;

2)估計本次省民運會中志愿者年齡的眾數(shù)和中位數(shù)(結(jié)果保留兩位小數(shù));

3)已知樣本容量為16,現(xiàn)在需要從樣本中30歲以下的志愿者中抽取2名志愿者談對本次運動會的感想,求被抽中的志愿者中恰有一名志愿者年齡不小于25歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求函數(shù)的最小值;

(Ⅱ)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生會為了解高二年級600名學生課余時間參加中華傳統(tǒng)文化活動的情況(每名學生最多參加7場).隨機抽取50名學生進行調(diào)查,將數(shù)據(jù)分組整理后,列表如下:

參加場數(shù)

0

1

2

3

4

5

6

7

占調(diào)查人數(shù)的百分比

8%

10%

20%

26%

18%

m%

4%

2%

則以下四個結(jié)論中正確的是( )

A.表中m的數(shù)值為10

B.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不高于2場的學生約為108人

C.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不低于4場的學生約為216人

D.若采用系統(tǒng)抽樣方法進行調(diào)查,從該校高二600名學生中抽取容量為30的樣本,則分段間隔為15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某地三角工廠分別位于邊長為2的正方形的兩個頂點中點.為處理這三角工廠的污水,在該正方形區(qū)域內(nèi)(含邊界)與等距的點處建一個污水處理廠,并鋪設(shè)三條排污管道,記輔設(shè)管道總長為千米.

1)按下列要求建立函數(shù)關(guān)系式:

i)設(shè),將表示成的函數(shù);

ii)設(shè),將表示成的函數(shù);

2)請你選用一個函數(shù)關(guān)系,確定污水廠位置,使鋪設(shè)管道總長最短.

查看答案和解析>>

同步練習冊答案