(本題滿分12分)已知三邊所在直線方程,,求邊上的高所在的直線方程.

解析試題分析:解:由解得交點(diǎn)B(-4,0),.
∴AC邊上的高線BD的方程 為.
考點(diǎn):本試題考查了直線的方程的求解運(yùn)算。
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用兩直線的垂直關(guān)系,得到高線所在直線的斜率,然后再利用兩條直線的交點(diǎn)得到端點(diǎn)A,C的坐標(biāo)一個(gè)即可,結(jié)合點(diǎn)斜式方程得到結(jié)論,屬于基礎(chǔ)題。體現(xiàn)了直線的位置關(guān)系的運(yùn)用。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知兩條直線,相交于點(diǎn).
(1)求交點(diǎn)的坐標(biāo);
(2)求過(guò)點(diǎn)且與直線垂直的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線 在點(diǎn) 處的切線  平行直線,且點(diǎn)在第三象限.
(1)求的坐標(biāo);
(2)若直線  , 且  也過(guò)切點(diǎn) ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分16分)已知直線
(1)求證:不論實(shí)數(shù)取何值,直線總經(jīng)過(guò)一定點(diǎn).
(2)為使直線不經(jīng)過(guò)第二象限,求實(shí)數(shù)的取值范圍.
(3)若直線與兩坐標(biāo)軸的正半軸圍成的三角形面積最小,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)求過(guò)直線2x+3y+5=O和直線2x+5y+7=0的交點(diǎn),且與直線x+3y=0平行的直線的方程,并求這兩條平行線間的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
如圖,已知三角形的頂點(diǎn)為A(2, 4),B(0,-2),C(-2,3),

求:
(Ⅰ)AB邊上的中線CM所在直線的一般方程;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)直線與兩坐標(biāo)軸圍成的三角形的面積為3,分別求滿足下列條件的直線的方程.
(1)過(guò)定點(diǎn).
(2)與直線垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知直線的方程為, 求直線的方程, 使得:
(1) 平行, 且過(guò)點(diǎn)(-1,3) ;
(2) 垂直, 且與兩軸圍成的三角形面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知的頂點(diǎn)、,邊上的中線所在直線為.
(I)求的方程;
(II)求點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案