【題目】已知數(shù)列滿足.

1)若,求數(shù)列的通項公式;

2)若且數(shù)列為公比不為1的等比數(shù)列,求q的值,使數(shù)列也是等比數(shù)列;

3)若,數(shù)列有最大值M與最小值,求的取值范圍.

【答案】(1) (2) (3)

【解析】

1)代入已知條件,即可得到數(shù)列為等差數(shù)列,可求通項公式。

2)利用迭代,用含的式子表示,根據(jù)為等比數(shù)列,求出的值。

3)利用累加法可證單調遞增且單調遞減即可得到數(shù)列的最大項與最小項,即結合即可求出的取值范圍。

解:(1)由,所以數(shù)列為等差數(shù)列.

,所以

2)由條件可知

所以

不妨設的公比為,則

是等比數(shù)列知:可求出

經檢驗,,此時是等比數(shù)列,所以滿足條件:

3)由條件可知,

所以

,

,因為,

所以,則單調遞增

,則單調遞減;

,所以數(shù)列的最大項為,

所以數(shù)列的最小項為.

,

因為,所以,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某班隨機抽查了20名學生的數(shù)學成績,分數(shù)制成如圖的莖葉圖,其中A組學生每天學習數(shù)學時間不足1個小時,B組學生每天學習數(shù)學時間達到一個小時。學校規(guī)定90分及90分以上記為優(yōu)秀,75分及75分以上記為達標,75分以下記為未達標.

1)分別求出AB兩組學生的平均分并估計全班的數(shù)學平均分;

2)現(xiàn)在從成績優(yōu)秀的學生中任意抽取2人,求這兩人恰好都來自B組的概率;

3)根據(jù)成績得到如下列聯(lián)表:

①直接寫出表中的值;

②判斷是否有的把握認為數(shù)學成績達標與否每天學習數(shù)學時間能否達到一小時有關.

參考公式與臨界值表:K2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知直線與圓O:相切.

(1)直線l過點(2,1)且截圓O所得的弦長為,求直線l的方程;

(2)已知直線y=3與圓O交于A,B兩點,P是圓上異于A,B的任意一點,且直線AP,BPy軸相交于M,N點.判斷點M、N的縱坐標之積是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且,對任意實數(shù),成立.

1)求函數(shù)的解析式;

2)若,解關于的不等式;

3)求最大的使得存在,只需,就有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義區(qū)間的長度均為,其中

(1)若函數(shù)的定義域為值域為寫出區(qū)間長度的最大值;

(2)若關于的不等式組的解集構成的各區(qū)間長度和為6,求實數(shù)的取值范圍;

(3)已知求證:關于的不等式的解集構成的各區(qū)間的長度和為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐ABCD中,都是等邊三角形,平面PAD平面ABCD,且,

1)求證:CDPA

2E,F分別是棱PAAD上的點,當平面BEF//平面PCD時,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是數(shù)列的前項和,對任意,都有;

1)若,求證:數(shù)列是等差數(shù)列,并求此時數(shù)列的通項公式;

2)若,求證:數(shù)列是等比數(shù)列,并求此時數(shù)列的通項公式;

3)設,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司在某市的貨物轉運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本為萬元.

1)若使每臺機器人的平均成本最低,問應買多少臺?

2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀(如圖).經實驗知,每臺機器人的日平均分揀量為,(單位:件).已知傳統(tǒng)的人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少百分之幾?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)的圖象與的圖象關于對稱.

1)若關于的方程上有解,求實數(shù)的取值范圍;

2)若,求的取值范圍.

查看答案和解析>>

同步練習冊答案