橢圓
+
=1上一點P到左焦點的距離為
,則P到右準線的距離為( )
本題考查橢圓的定義.
由橢圓方程
知:
設橢圓的左焦點,右焦點分別為
橢圓上點
到右準線的距離為
則
所以
故選C
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(15分)如圖,設拋物線
的準線與
軸交于
,焦點為
;以
為焦點,離心率
的橢圓
與拋物線
在
軸上方的交點為
,延長
交拋物線于點
,
是拋物線
上一動點,且M在
與
之間運動.
(1)當
時,求橢圓
的方程;
(2)當
的邊長恰好是三個連續(xù)的自然數(shù)時,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
橢圓
G:
的兩個焦點
、
,
M是橢圓上一點,且滿足
.
(1)求離心率
的取值范圍;
(2)當離心率
取得最小值時,點
到橢圓上的點的最遠距離為
;
①求此時橢圓
G的方程;
②設斜率為
(
)的直線
與橢圓G相交于不同的兩點
A、
B,
Q為
AB的中點,問:
A、
B兩點能否關(guān)于過點
、
Q的直線對稱?若能,求出
的取值范圍;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓:
.
(Ⅰ)若橢圓的一個焦點到長軸的兩個端點的距離分別為
和
,求橢圓的方程;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知菱形
的頂點
在橢圓
上,對角線
所在直線的斜率為1.
(1)當直線
過點
時,求直線
的方程;
(2)當
時,求菱形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設橢圓
,右焦點F(c,0),方程
的兩個根分別為x
1,x
2,則點P(x
1,x
2)在 ( )
A.圓上 | B.圓內(nèi) |
C.圓外 | D.以上三種情況都有可能 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的離心率
e是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
中,以點M(-1,2)為中點的弦所在的直線斜率為 ▲
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知橢圓的標準方程為
,過點
的雙曲線的實軸的兩端點恰好是橢圓的兩焦點,求雙曲線的標準方程.
查看答案和解析>>