(本小題滿分12分)
已知橢圓:
.
(Ⅰ)若橢圓的一個焦點到長軸的兩個端點的距離分別為
和
,求橢圓的方程;
(Ⅱ)如圖,過坐標(biāo)原點
任作兩條互相垂直的直線與橢圓分別交于
和
四點.設(shè)原點
到四邊形
某一邊的距離為
,試求:當(dāng)
時
的值。
(1)
(2)
.
⑵當(dāng)P在x軸上時,易知R在y軸上,此時PR方程為
,
.
⑶當(dāng)P不在坐標(biāo)軸上時,設(shè)P
Q斜率為k,
、
即
整理得
.再將①②帶
入,得
綜上當(dāng)
時,有
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
+
=1上一點P到左焦點的距離為
,則P到右準(zhǔn)線的距離為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
求過點
且與橢圓
有相同焦點
的橢圓標(biāo)準(zhǔn)方程解。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題13分)
已知橢圓的焦點在
軸上,它的一個頂點恰好是拋物線
的焦點,離心率
,過橢圓的右焦點
作不與坐標(biāo)軸垂直的直線
,交橢圓于A、B兩點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點M(m,0)是線段OF上的一個動點,且
,求
取值范圍;
(Ⅲ)設(shè)點C是點A關(guān)于x軸的對稱點,在x軸上是否存在一個定點N,使得C、B、N 三點共線?若存在,求出定點N的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
,
,
其中
是常數(shù)且
,若
的最小值 是
,滿足條件的點
是橢圓
一弦的中點,則此弦所在的直線方程為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
的焦距為2,則
的值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在直角三角形ABC中,
則以點A、B為焦點且過點C的橢圓的離心率e等于
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若A點坐標(biāo)為(1,1),F(xiàn)1是5x2+9y2=45橢圓的左焦點,點P是橢圓的動點,則|PA|+|P F1|的最小值是_______ ___
查看答案和解析>>