【題目】某重點中學(xué)將全部高一學(xué)生分成兩個成績相當(dāng)(成績的均值、方差都相同)的級部, 級部采用傳統(tǒng)形式的教學(xué)方式, 級部采用新型的基于信息化的自主學(xué)習(xí)教學(xué)方式.為了解教學(xué)效果,期末考試后分別從兩個級部中各隨機(jī)抽取30名學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計,做出莖葉圖如下,記成績不低于127分者為“優(yōu)秀”.

1級部樣本的30個個體中隨機(jī)抽取1個,求抽出的為“優(yōu)秀”的概率

2由以上數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為“優(yōu)秀”與教學(xué)方式有關(guān).

附表

.

【答案】(1).(2)見解析.

【解析】試題分析:(1)根據(jù)古典概型的計算公式得到優(yōu)秀的共有13 級部樣本有30個個體,;(2)根據(jù)公式得到 ,可得到結(jié)果。

解析:

(1)級部樣本的30個個體中為“優(yōu)秀”的共有13個,

設(shè)在級部樣本的30個個體中隨機(jī)抽取1個,抽出的為“優(yōu)秀”的記為事件,則.

(2)

級部|||是否優(yōu)秀

優(yōu)

不優(yōu)

總計

A

4

26

30

B

13

17

30

總計

17

43

60

假設(shè)“優(yōu)秀”與教學(xué)方式無關(guān),根據(jù)列聯(lián)表中的數(shù)據(jù),得到

.

因此有的把握認(rèn)為“優(yōu)秀”與教學(xué)方式有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面四邊形ABCD內(nèi)接于圓O,AC是圓O的一條直徑,PA⊥平面ABCD,PA=AC=2,E是PC的中點,∠DAC=∠AOB

(1)求證:BE∥平面PAD;
(2)若二面角P﹣CD﹣A的正切值為2,求直線PB與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2012年中華人民共和國環(huán)境保護(hù)部批準(zhǔn)《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》為國家環(huán)境質(zhì)量標(biāo)準(zhǔn),該標(biāo)準(zhǔn)增設(shè)和調(diào)整了顆粒物、二氧化氮、鉛、笨等的濃度限值,并從2016年1月1日起在全國實施.空氣質(zhì)量的好壞由空氣質(zhì)量指數(shù)確定,空氣質(zhì)量指數(shù)越高,代表空氣污染越嚴(yán)重,某市對市轄的某兩個區(qū)加大了對空氣質(zhì)量的治理力度,從2015年11月1日起監(jiān)測了100天的空氣質(zhì)量指數(shù),并按照空氣質(zhì)量指數(shù)劃分為:指標(biāo)小于或等于115為通過,并引進(jìn)項目投資.大于115為未通過,并進(jìn)行治理.現(xiàn)統(tǒng)計如下.

空氣質(zhì)量指數(shù)

(0,35]

[35,75]

(75,115]

(115,150]

(150,250]

>250

空氣質(zhì)量類別

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

甲區(qū)天數(shù)

13

20

42

20

3

2

乙區(qū)天數(shù)

8

32

40

16

2

2


(1)以頻率值作為概率值,求甲區(qū)和乙區(qū)通過監(jiān)測的概率;
(2)對于甲區(qū),若通過,引進(jìn)項目可增加稅收40(百萬元),若沒通過監(jiān)測,則治理花費5(百萬元);對于乙,若通過,引進(jìn)項目可增加稅收50(百萬元),若沒通過監(jiān)測,則治理花費10(百萬元)..在(1)的前提下,記X為通過監(jiān)測,引進(jìn)項目增加的稅收總額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2alnx﹣2ax=0有唯一解,則實數(shù)a的值為( )
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐, 平面, , ,, .

求證:平面平面;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廣場舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產(chǎn)物,其兼具文化性和社會性,是精神文明建設(shè)成果的一個重要指標(biāo)和象征.2015年某高校社會實踐小組對某小區(qū)跳廣場舞的人的年齡進(jìn)行了凋查,隨機(jī)抽取了40名廣場舞者進(jìn)行調(diào)查,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.

(1)估計在40名廣場舞者中年齡分布在[40,70)的人數(shù);
(2)求40名廣場舞者年齡的中位數(shù)和平均數(shù)的估計值;
(3)若從年齡在[20,40)中的廣場舞者中任取2名,求這兩名廣場舞者年齡在[30,40)中的人數(shù)X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:在區(qū)間內(nèi)有且僅有一個實數(shù),使得成立,則稱函數(shù)具有性質(zhì)M

判斷函數(shù)是否具有性質(zhì)M,說明理由;

若函數(shù)具有性質(zhì)M,求實數(shù)a的取值范圍;

若函數(shù)具有性質(zhì)M,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,若輸出i的值為63,則判斷框內(nèi)可填入的條件是(

A.S>27
B.S≤27
C.S≥26
D.S<26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,分別過A、B兩點作準(zhǔn)線的垂線,垂足分別為A′、B′兩點,以線段A′B′為直徑的圓C過點(﹣2,3),則圓C的方程為(
A.(x+1)2+(y﹣2)2=2
B.(x+1)2+(y﹣1)2=5
C.(x+1)2+(y+1)2=17
D.(x+1)2+(y+2)2=26

查看答案和解析>>

同步練習(xí)冊答案