【題目】隨機(jī)觀測(cè)生產(chǎn)某種零件的某工作廠25名工人的日加工零件個(gè)數(shù)(單位:件),獲得數(shù)據(jù)如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組

頻數(shù)

頻率

[25,30]

3

0.12

(30,35]

5

0.20

(35,40]

8

0.32

(40,45]

n1

f1

(45,50]

n2

f2


(1)確定樣本頻率分布表中n1 , n2 , f1和f2的值;
(2)根據(jù)上述頻率分布表,畫出樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,求在該廠任取4人,至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率.

【答案】
(1)解:(40,45]的頻數(shù)n1=7,頻率f1=0.28;(45,50]的頻數(shù)n2=2,頻率f2=0.08
(2)解:頻率分布直方圖:


(3)解:設(shè)在該廠任取4人,沒有一人的日加工零件數(shù)落在區(qū)間(30,35]為事件A,則至少有一人的日加工零件數(shù)落在區(qū)間(30,35]為事件 ,

已知該廠每人日加工零件數(shù)落在區(qū)間(30,35]的概率為

∴P(A)= = ,

∴P( )=1﹣P(A)= ,

∴在該廠任取4人,至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率為


【解析】(1)利用所給數(shù)據(jù),可得樣本頻率分布表中n1 , n2 , f1和f2的值;(2)根據(jù)上述頻率分布表,可得樣本頻率分布直方圖;(3)利用對(duì)立事件可求概率.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布表的相關(guān)知識(shí),掌握第一步,求極差;第二步,決定組距與組數(shù);第三步,確定分點(diǎn),將數(shù)據(jù)分組;第四步,列頻率分布表,以及對(duì)頻率分布直方圖的理解,了解頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若a=1,求f(x)的極值;

(2)若存在x0[1,e],使得f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時(shí),(萬元);當(dāng)年產(chǎn)量不小于80千件時(shí),(萬元),每件售價(jià)為0.05萬元,通過市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=aexlnx+ ,曲線y=f(x)在點(diǎn)(1,f(1))處得切線方程為y=e(x﹣1)+2.
(1)求a、b;
(2)證明:f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={(x1 , x2 , x3 , x4 , x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中滿足條件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素個(gè)數(shù)為(
A.60
B.90
C.120
D.130

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的右焦點(diǎn)為( ,0),離心率為
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)P(x0 , y0)為橢圓C外一點(diǎn),且點(diǎn)P到橢圓C的兩條切線相互垂直,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(c為常數(shù)),且f(1)=0.

(1)求c的值;

(2)證明函數(shù)f(x)在[0,2]上是單調(diào)遞增函數(shù);

(3)已知函數(shù)g(x)=f(ex),判斷函數(shù)g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014福建)在下列向量組中,可以把向量 =(3,2)表示出來的是( )
A.=(0,0), =(1,2)
B.=(﹣1,2), =(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李明在10場(chǎng)籃球比賽中的投籃情況統(tǒng)計(jì)如下(假設(shè)各場(chǎng)比賽相互獨(dú)立);

場(chǎng)次

投籃次數(shù)

命中次數(shù)

場(chǎng)次

投籃次數(shù)

命中次數(shù)

主場(chǎng)1

22

12

客場(chǎng)1

18

8

主場(chǎng)2

15

12

客場(chǎng)2

13

12

主場(chǎng)3

12

8

客場(chǎng)3

21

7

主場(chǎng)4

23

8

客場(chǎng)4

18

15

主場(chǎng)5

24

20

客場(chǎng)5

25

12


(1)從上述比賽中隨機(jī)選擇一場(chǎng),求李明在該場(chǎng)比賽中投籃命中率超過0.6的概率;
(2)從上述比賽中隨機(jī)選擇一個(gè)主場(chǎng)和一個(gè)客場(chǎng),求李明的投籃命中率一場(chǎng)超過0.6,一場(chǎng)不超過0.6的概率;
(3)記 是表中10個(gè)命中次數(shù)的平均數(shù),從上述比賽中隨機(jī)選擇一場(chǎng),記X為李明在這場(chǎng)比賽中的命中次數(shù),比較EX與 的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

同步練習(xí)冊(cè)答案