【題目】已知函數(shù)

(1)若a=1,求f(x)的極值;

(2)若存在x0[1,e],使得f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍.

【答案】(1)f(x)的極小值是f(1)=1,無極大值(2)

【解析】分析:(1)求出導(dǎo)數(shù),由不等式確定增區(qū)間,由確定減區(qū)間,從而得極值;

(2)問題等價(jià)于,因此用導(dǎo)數(shù)研究函數(shù)的最小值,由最小值小于0可求得的范圍,注意要分類討論.

詳解:(1)a=1時(shí),f(x)=x﹣lnx,函數(shù)f(x)的定義域是(0,+∞),

f′(x)=1﹣=,令f′(x)>0,解得x>1,令f′(x)<0,解得:0<x<1,

f(x)在(0,1)遞減,在(1,+∞)遞增,故f(x)的極小值是f(1)=1,無極大值;

(2)存在x0[1,e],使得f(x0)<g(x0)成立,等價(jià)于[f(x)﹣g(x)]min<0,

(x[1,e])成立,設(shè)h(x)=f(x)﹣g(x)=x﹣alnx+,

h′(x)=,令h′(x)=0,解得:x=﹣1(舍),x=1+a;

①當(dāng)1+a≥e,h(x)在[1,e]遞減,∴h(x)min=h(e)=e2﹣ea+1+a,

h(x)min<0,解得:a>;

②當(dāng)1+a<e時(shí),h(x)在(1,a+1)遞減,在(a+1,e)遞增,

h(x)min=h(1+a)=a[1﹣ln(a+1)]+2>2h(x)min<0矛盾,

綜上,a>

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)用五點(diǎn)作圖法畫出在長(zhǎng)度為一個(gè)周期的區(qū)間上的圖象;

(2))求函數(shù)的單調(diào)遞增區(qū)間;

(3)簡(jiǎn)述如何由的圖象經(jīng)過適當(dāng)?shù)膱D象變換得到的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=ex,g(x)=xb,b∈R.

(1)若函數(shù)f (x)的圖象與函數(shù)g(x)的圖象相切,求b的值;

(2)設(shè)T(x)=f (x)+ag(x),a∈R,求函數(shù)T(x)的單調(diào)增區(qū)間;

(3)設(shè)h(x)=|g(x)|·f (x),b1.若存在x1x2 [0,1],使|h(x1)-h(x2)|1成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙3人投籃,投進(jìn)的概率分別是.

(Ⅰ)現(xiàn)3人各投籃1,3人都沒有投進(jìn)的概率;

(Ⅱ)表示乙投籃3次的進(jìn)球數(shù),求隨機(jī)變量的概率分布及數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通指數(shù)是指交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個(gè)級(jí)別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶?在晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.

(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫(gè)數(shù);

(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

(3)從(2)中抽取的6個(gè)路段中任取2個(gè),求至少有1個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),則下列命題中正確的個(gè)數(shù)是( )

當(dāng)時(shí),函數(shù)上是單調(diào)增函數(shù);

當(dāng)時(shí),函數(shù)上有最小值;

函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;

方程可能有三個(gè)實(shí)數(shù)根.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,.

(1) 求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙人投籃,投進(jìn)的概率分別是,.

(1)現(xiàn)人各投籃次,求人至少一人投進(jìn)的概率;

(2)用表示乙投籃次的進(jìn)球數(shù),求隨機(jī)變量的概率分布及數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)觀測(cè)生產(chǎn)某種零件的某工作廠25名工人的日加工零件個(gè)數(shù)(單位:件),獲得數(shù)據(jù)如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組

頻數(shù)

頻率

[25,30]

3

0.12

(30,35]

5

0.20

(35,40]

8

0.32

(40,45]

n1

f1

(45,50]

n2

f2


(1)確定樣本頻率分布表中n1 , n2 , f1和f2的值;
(2)根據(jù)上述頻率分布表,畫出樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,求在該廠任取4人,至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案