已知橢圓經(jīng)過點(diǎn),離心率為
(1)求橢圓C的方程:
(2)過點(diǎn)Q(1,0)的直線l與橢圓C相交于A、B兩點(diǎn),點(diǎn)P(4,3),記直線PA,PB的斜率分別為k1,k2,當(dāng)k1·k2最大時(shí),求直線l的方程.

(1) .(2).

解析試題分析:(1) 由已知建立方程組 ①  ②, 即得解.
(2)兩種思路,一是討論①當(dāng)直線的斜率為0,②當(dāng)直線的斜率不為0的情況;二是討論①當(dāng)直線垂直于x軸,②當(dāng)直線與x軸不垂直的情況.兩種情況的不同之處在于,直線方程的靈活設(shè)出.
第一種思路可設(shè)直線的方程為, 第二種思路可設(shè)直線的方程為.兩種思路下,都需要聯(lián)立方程組,應(yīng)用韋達(dá)定理,簡(jiǎn)化解題過程.
本題是一道相當(dāng)?shù)湫偷念}目.
試題解析:(1) 由已知可得,所以    ①               1分
又點(diǎn)在橢圓上,所以    ②               2分
由①②解之,得.
故橢圓的方程為.                                   4分
(2)解法一:①當(dāng)直線的斜率為0時(shí),則;       5分
②當(dāng)直線的斜率不為0時(shí),設(shè),,直線的方程為,
代入,整理得.        7分
,                                 9分
,,
所以, 

                                 11分
,則
當(dāng)時(shí)即時(shí),;
當(dāng)時(shí),
 或
當(dāng)且僅當(dāng),即時(shí), 取得最大值.               13分
由①②得,直線的方程為.                  14分
解法二:①當(dāng)直線垂直于x軸時(shí),則;
②當(dāng)直線

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,且過點(diǎn),點(diǎn)A、B分別是橢圓C長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于軸上方,.

(1)求橢圓C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)設(shè)M是直角三角PAF的外接圓圓心,求橢圓C上的點(diǎn)到點(diǎn)M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的右頂點(diǎn)為A(2,0),點(diǎn)P(2e,)在橢圓上(e為橢圓的離心率).

(1)求橢圓的方程;
(2)若點(diǎn)B,C(C在第一象限)都在橢圓上,滿足,且,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)在拋物線上.
(1)若的三個(gè)頂點(diǎn)都在拋物線上,記三邊,,所在直線的斜率分別為,,求的值;
(2)若四邊形的四個(gè)頂點(diǎn)都在拋物線上,記四邊,所在直線的斜率分別為,,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為、為原點(diǎn).
(1)如圖1,點(diǎn)為橢圓上的一點(diǎn),的中點(diǎn),且,求點(diǎn)軸的距離;

(2)如圖2,直線與橢圓相交于、兩點(diǎn),若在橢圓上存在點(diǎn),使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)的右焦點(diǎn)為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于,兩點(diǎn),分別為線段的中點(diǎn). 若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓:的離心率為,過橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn)(點(diǎn)在第一象限).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知為橢圓的左頂點(diǎn),平行于的直線與橢圓相交于兩點(diǎn).判斷直線是否關(guān)于直線對(duì)稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.
(1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓 的左、右焦點(diǎn)分別是、,是橢圓右準(zhǔn)線上的一點(diǎn),線段的垂直平分線過點(diǎn).又直線按向量平移后的直線是,直線按向量平移后的直線是 (其中)。
(1) 求橢圓的離心率的取值范圍。
(2)當(dāng)離心率最小且時(shí),求橢圓的方程。
(3)若直線相交于(2)中所求得的橢圓內(nèi)的一點(diǎn),且與這個(gè)橢圓交于、兩點(diǎn),與這個(gè)橢圓交于、兩點(diǎn)。求四邊形ABCD面積的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案