【題目】空間中個平面,其中任意三個平面無公垂面.那么,下述四個結(jié)論

1沒有任何兩個平面互相平行;

2沒有任何三個平面相交于一條直線;

3平面間的任意兩條交線都不平行;

4平面間的每一條交線均與個平面相交.

其中,正確的各數(shù)為( ).

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

若有兩個平面互相平行,則的公垂面也是的垂面,與任意三個平面無公垂面矛盾.結(jié)論1.

若有三個平面相交于一條直線,則這條直線的垂面便是三個平面的公垂面,與已知矛盾.結(jié)論2.

若有兩條交線平行,則這兩條直線的垂面至少是三個平面的公垂面,與已知矛盾.結(jié)論3.

若有的交線與平面不相交,則有兩種可能:上(相交于),或平行(中某一個平行,或相交于三條平行直線).這都與已知條件矛盾.結(jié)論4. 選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班上午有五節(jié)課,分別安排語文,數(shù)學(xué),英語,物理,化學(xué)各一節(jié)課.要求語文與化學(xué)相鄰,數(shù)學(xué)與物理不相鄰,且數(shù)學(xué)課不排第一節(jié),則不同排課法的種數(shù)是

A. 24B. 16C. 8D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x2mlnx,h(x)x2xa.

(1)當(dāng)a0時,f(x)h(x)(1,+∞)上恒成立,求實數(shù)m的取值范圍;

(2)當(dāng)m2時,若函數(shù)k(x)f(x)h(x)在區(qū)間(1,3)上恰有兩個不同零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】件產(chǎn)品中,有件正品,件次品,從這件產(chǎn)品中任意抽取.

1)共有多少種不同的抽法?

2)抽出的件中恰有件次品的抽法有多少種?

3)抽出的件中至少有件次品的抽法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有三種股票,前兩種的股數(shù)之和等于第三種的股數(shù), 第二種股票的總價值是第一種股票的4 第一、二種股票的總價值等于第三種股票的總價值第二種股票每股比第一種股票貴元到2,而第三種股票每股的價值不小于元而不大于6求在股票總量中第一種股票股數(shù)占總股數(shù)的百分比的最大值與最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果在一條平面曲線上存在四點,使得這四點構(gòu)成的圖形是一個菱形,則稱該曲線存在內(nèi)接菱形現(xiàn)已知雙曲線,雙曲線,其中,,證明在雙曲線中有且僅有一條存在內(nèi)接菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某船由甲地逆水行駛到乙地,甲、乙兩地相距skm),水的流速為常量a),船在靜水中的最大速度為b)(),已知船每小時的燃料費用(以元為單位)與船在靜水中的速度的平方成正比,比例系數(shù)為k,則船在靜水中的航行速度為多少時,其全程的燃料費用最省?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年初,我國突發(fā)新冠肺炎疫情.面對“突發(fā)災(zāi)難”,舉國上下心,繼解放軍醫(yī)療隊于除夕夜飛抵武漢,各省醫(yī)療隊也陸續(xù)增援,紛紛投身疫情防控與病人救治之中.為分擔(dān)“逆行者”的后顧之憂,某大學(xué)學(xué)生志愿者團隊開展“愛心輔學(xué)”活動,為抗疫前線工作者子女在線輔導(dǎo)功課.現(xiàn)隨機安排甲、乙、丙3名志愿者為某學(xué)生輔導(dǎo)數(shù)學(xué)、物理、化學(xué)、生物4門學(xué)科,每名志愿者至少輔導(dǎo)1門學(xué)科,每門學(xué)科由1名志愿者輔導(dǎo),則數(shù)學(xué)學(xué)科恰好由甲輔導(dǎo)的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在梯形中(圖1),, , ,過分別作的垂線,垂足分別為、,已知 ,將梯形沿同側(cè)折起,使得, ,得空間幾何體(圖2). 

(1)證明: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案