已知a>0,函數(shù)f(x)=
1-ax
x
,x∈({0,+∞}),設(shè)0<x1
2
a
,記曲線y=f(x)在點M(x1,f(x1))處的切線為l,
(1)求l的方程;
(2)設(shè)l與x軸交點為(x2,0)證明:0<x2
1
a
分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)f(x)在x=x1處的導(dǎo)數(shù),從而求出切線的斜率,再用點斜式寫出化簡即可;
(2)切線方程中令y=0,將x2用x1表示,然后利用配方法得x2=-a(x1-
1
a
)2+
1
a
,根據(jù)x1的范圍求出x2的范圍即可.
解答:解:(1)f(x)的導(dǎo)數(shù)f′(x)=-
1
x2
,由此得切線l的方程y-
1-ax1
x1
=-
1
x
2
1
(x-x1)
;
(2)依題得,切線方程中令y=0,得x2=x1(1-ax1)+x1=x1(2-ax1),其中0<x1
2
a
,
0<x1
2
a
,x2=x1(2-ax1),有x2>0,及x2=-a(x1-
1
a
)2+
1
a
,
0<x2
1
a
,當(dāng)且僅當(dāng)x1=
1
a
時,x2=
1
a
點評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,以及不等式的證明,考查運算求解能力、推理論證能力,化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項的命題中為假命題的是( 。
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)設(shè)曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
(Ⅰ)當(dāng)a=
1
8

①求f(x)的單調(diào)區(qū)間;
②證明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=
|x-2a|
x+2a
在區(qū)間[1,4]上的最大值等于
1
2
,則a的值為
 

查看答案和解析>>

同步練習(xí)冊答案