解答:解:(1)當(dāng)x-2a在區(qū)間[1,4]上恒大于零時(shí),
∵x-2a>0,∴a<
;
當(dāng)x=1時(shí),滿(mǎn)足x-2a在[1,4]上恒大于零,即a<
;
此時(shí)函數(shù)f(x)=
=1-
,
該函數(shù)在定義域[1,4]上為增函數(shù),在x=4時(shí),取最大值f(4)=
,
∴a=
,不滿(mǎn)足a<
的假設(shè),舍去.
(2)當(dāng)x-2a在區(qū)間[1,4]上恒小于零時(shí),
∵x-2a<0,∴a>
;
當(dāng)x=4時(shí),滿(mǎn)足x-2a在[1,4]上恒小于零,即a>2;
此時(shí)函數(shù)f(x)=
=
-1,
該函數(shù)在定義域[1,4]上為減函數(shù),在x=1時(shí),取最大值f(1)=
,
∴a=
,不滿(mǎn)足a>2的假設(shè),舍去.
(3)由前面討論知,當(dāng)
<a<2時(shí),x-2a在區(qū)間[1,4]上既有大于零又有小于零時(shí),
①當(dāng)x<2a時(shí),x-2a<0,此時(shí)函數(shù)f(x)=
-1在[1,2a)上為減函數(shù),在x=1時(shí),取到最大值f(1)=
;
②當(dāng)x>2a時(shí),x-2a>0.此時(shí)函數(shù)f(x)=1-
在(2a,4]時(shí)為增函數(shù),在x=4時(shí),取到最大值f(4)=
;
總之,此時(shí)函數(shù)在區(qū)間[1,4]上先減后增,在端點(diǎn)處取到最大值;
當(dāng)函數(shù)在x=1處取最大值時(shí),解得a=
,此時(shí)函數(shù)f(x)=
,將函數(shù)的另一個(gè)最大值點(diǎn)x=4代入得:
f(4)=
,
∵f(1)>f(4),∴滿(mǎn)足條件;
當(dāng)函數(shù)在x=4處取最大值時(shí),解得a=
,此時(shí)函數(shù)f(x)=
,將函數(shù)的另一個(gè)最大值點(diǎn)x=1代入得:
f(1)=
,
∵f(1)<f(4),∴滿(mǎn)足條件;
∴a=
或a=
;
故答案為:
或
.