【題目】2017118日開(kāi)始,支付寶用戶可以通過(guò)參與螞蟻森林兩種方式獲得?ǎ◥(ài)國(guó)福、富強(qiáng)福、和諧福、友善福、敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個(gè)社團(tuán)在年后開(kāi)學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動(dòng),則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

是否集齊五福

性別

合計(jì)

30

10

40

35

5

40

合計(jì)

65

15

80

(1)根據(jù)如上的列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為集齊五福與性別有關(guān)”?

(2)計(jì)算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

(3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒(dòng),該大學(xué)的學(xué)生會(huì)從集齊五福的學(xué)生中,選取2位男生和3位女生逐個(gè)進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對(duì)象中至少有一位男生的概率.

【答案】(1)見(jiàn)解析;(2)8125;(3) .

【解析】試題分析:(1) 由表中可知,a,b,c,d,n,代入卡方公式可求得,可得結(jié)論。(2)由樣本頻率估計(jì)概率,可知P=,所以集齊人數(shù)為n=.(3) 由由枚舉法與古典概型可求。

試題解析;(1)根據(jù)列聯(lián)表中的數(shù)據(jù),得到的觀測(cè)值為

故不能在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為“集齊五福與性別有關(guān)”.

(2)這80位大學(xué)生集齊五福的頻率為.

據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù)為.

(3)設(shè)選取的2位男生和3位女生分別記為, , , ,隨機(jī)選取3次采訪的所有結(jié)果為, , , , , , 共有10個(gè)基本事件,至少有一位男生的基本事件有9個(gè),

故所求概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)點(diǎn),和直線相切,且圓心在直線上.

(1)求圓的方程;

(2)已知直線經(jīng)過(guò)原點(diǎn),并且被圓截得的弦長(zhǎng)為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=f(x)是偶函數(shù),定義x≥0時(shí),f(x)=

(1)求f(-2);

(2)當(dāng)x<-3時(shí),求f(x)的解析式;

(3)設(shè)函數(shù)y=f(x)在區(qū)間[-5,5]上的最大值為g(a),試求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,且.點(diǎn)

是棱的中點(diǎn),平面與棱交于點(diǎn).

1)求證:;

2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cosθ,θ∈[0, ]
(1)求C的參數(shù)方程;
(2)設(shè)點(diǎn)D在半圓C上,半圓C在D處的切線與直線l:y= x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,求直線CD的傾斜角及D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1證明 , 不可能成等差數(shù)列;

2證明: , 不可能為同一等差數(shù)列中的三項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)=x2+(2a+1)x+a2+3aaR).

(Ⅰ)若函數(shù)fx)在[0,2]上單調(diào),求a的取值范圍;

(Ⅱ)若fx)在閉區(qū)間[m,n]上單調(diào)遞增(其中mn),且{y|y=fx),mxn}=[mn],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一年級(jí)某次數(shù)學(xué)競(jìng)賽隨機(jī)抽取100名學(xué)生的成績(jī),分組為[50,60),[60,70),[70,80),[80,90),[90,100],統(tǒng)計(jì)后得到頻率分布直方圖如圖所示:

(1)試估計(jì)這組樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(結(jié)果精確到0.1);

(2)年級(jí)決定在成績(jī)[70,100]中用分層抽樣抽取6人組成一個(gè)調(diào)研小組,對(duì)高一年級(jí)學(xué)生課外學(xué)習(xí)數(shù)學(xué)的情況做一個(gè)調(diào)查,則在[70,80),[80,90),[90,100]這三組分別抽取了多少人?

(3)現(xiàn)在要從(2)中抽取的6人中選出正副2個(gè)小組長(zhǎng),求成績(jī)?cè)?/span>[80,90)中至少有1人當(dāng)選為正、副小組長(zhǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)函數(shù)f(x),如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱f(x)為“保三角形函數(shù)”.

(1)判斷f1(x)=x,f2(x)=log2(6+2sinx-cos2x)中,哪些是“保三角形函數(shù)”,哪些不是,并說(shuō)明理由;

(2)若函數(shù)g(x)=lnx(x∈[M,+∞))是“保三角形函數(shù)”,求M的最小值;

(3)若函數(shù)h(x)=sinx(x∈(0,A))是“保三角形函數(shù)”,求A的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案