【題目】設函數(shù),其圖象與軸交于,兩點,且.
(1)求的取值范圍;
(2)證明:.
【答案】(1)(2)證明見解析;
【解析】
(1)先求出,易得當不符合題意,當時,當時,取得極小值,所以,得到的范圍,再由,,結合零點存在定理,得到答案.(2)由題意,,兩式相減,得到,記,將轉化為,再由導數(shù)求出其單調性,從而得到,再由是單調增函數(shù),得到.
解:(1)因為,
所以.
若,則,
則函數(shù)是單調增函數(shù),這與題設矛盾.
所以,令,則.
當時,,是單調減函數(shù);
時,,是單調增函數(shù);
于是當時,取得極小值.
因為函數(shù)的圖象與軸交于兩點,,
所以,即.
此時,存在,;
存在,,
又在上連續(xù),故.
(2)因為
兩式相減得.
記,
則,
設,則,
所以是單調減函數(shù),
則有,而,所以.
又是單調增函數(shù),且;
所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知,如圖甲,正方形的邊長為4,,分別為,的中點,以為棱將正方形折成如圖乙所示,且,點在線段上且不與點,重合,直線與由,,三點所確定的平面相交,交點為.
(1)若,試確定點的位置,并證明直線平面;
(2)若,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某輛汽車以千米/小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求)時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),且.
(1)若汽車以千米/小時的速度行駛時,每小時的油耗為升,欲使每小時的油耗不超過升,求的取值范圍;
(2)求該汽車行駛千米的油耗的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】江蘇省濱臨黃海,每年夏秋季節(jié)常常受到臺風的侵襲.據(jù)監(jiān)測,臺風生成于西北太平洋洋面上,其中心位于市南偏東方向的處,該臺風先沿北偏西方向移動后在處登陸,登陸點在市南偏東方向處,之后,臺風將以的速度沿北偏西方向繼續(xù)移動.已知登陸時臺風的侵襲范圍(圓形區(qū)域)半徑為,并以的速度不斷增大.()
(1)求臺風生成時中心與市的距離;
(2)臺風登陸后多少小時開始侵襲市?(保留兩位有效數(shù)字)
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為4,過點且斜率為的直線交橢圓于兩點,且點為線段的中點
(1)求橢圓的方程;
(2)設點為坐標原點,過右焦點的直線交橢圓于兩點,(不在軸上),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改革”引起廣泛關注,為了解某地區(qū)學生和包括老師、家長在內的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人進行調查,就“是否取消英語聽力”問題進行了問卷調查統(tǒng)計,結果如下表:
態(tài)度 調查人群 | 應該取消 | 應該保留 | 無所謂 |
在校學生 | 2100人 | 120人 | 人 |
社會人士 | 600人 | 人 | 人 |
(1)已知在全體樣本中隨機抽取人,抽到持“應該保留”態(tài)度的人的概率為,現(xiàn)用分層抽樣的方法在所有參與調查的人中抽取人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應該保留”態(tài)度的人中,用分層抽樣的方法抽取人,再平均分成兩組進行深入交流,求第一組中在校學生人數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)在[0,7]上有1和6兩個零點,且函數(shù)與函數(shù)都是偶函數(shù),則在[0,2019]上的零點至少有( )個
A.404B.406C.808D.812
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象過原點,且在原點處的切線與直線垂直.(為自然對數(shù)的底數(shù)).
(1)討論的單調性;
(2)若對任意的,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com