【題目】某體育用品商場經(jīng)營一批進價為40元的運動服,經(jīng)市場調(diào)查發(fā)現(xiàn)銷售量y(件)與銷售單價x(元)符合一次函數(shù)模型,且銷售單價為60元時,銷量是600件;當銷售單價為64元時,銷量是560.

(1)寫出銷售量y(件)與銷售單價x()之間的函數(shù)關(guān)系式

(2)試求銷售利潤z(元)與銷售單價x()之間的函數(shù)關(guān)系式;

(3)(1)(2)條件下,當銷售單價為多少元時,商場能獲得最大利潤?并求出此最大利潤.

【答案】(1)(2) ;(3)當時,.

【解析】

1)設(shè)出一次函數(shù)的解析式,代入兩個已知條件列方程組,解方程組求得解析式.

2)用銷售量乘以每件利潤,求得銷售利潤.

3)利用配方法,求得當為何值時,利潤最大,并求得最大利潤.

1)由于銷售量y(件)與銷售單價x(元)符合一次函數(shù)模型,故設(shè)銷售量y(件)與銷售單價x()之間的函數(shù)關(guān)系式.依題意由,解得.所以.

2)銷售量乘以每件利潤得.

3)由(2)得.故當時,利潤取得最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點

(1)求過AB中點,且在兩坐標軸上截距相等的直線的方程;

(2)求過原點,且AB兩點到該直線距離相等的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的定義域;

(2)判斷的奇偶性并給予證明;

(3)求關(guān)于x的不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P—ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,EF分別是AB、PC的中點,PAAD.

求證:(1)CD⊥PD;(2)EF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

(1)求的值;

(2)畫出圖像,并寫出單調(diào)遞增區(qū)間(不需要說明理由);

(3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于相關(guān)系數(shù)的說法不正確的是( )

A. 相關(guān)系數(shù)越大兩個變量間相關(guān)性越強;

B. 相關(guān)系數(shù)的取值范圍為;

C. 相關(guān)系數(shù)時兩個變量正相關(guān),時兩個變量負相關(guān);

D. 相關(guān)系數(shù)時,樣本點在同一直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩隊學(xué)生參加“知識聯(lián)想”搶答賽,比賽規(guī)則:①主持人依次給出兩次提示,第一次提示后答對得2分,第二次提示后答對得1分,沒搶到或答錯者不得分;②主持人給出第一個提示后開始搶答,第一輪搶答出錯失去第二輪答題資格;③每局比賽分兩輪,若第一輪搶答者給出正確答案,則此局比賽結(jié)束,若第一輪答題者答錯,主持人提示后另一隊直接答題。如果甲、乙兩隊搶到答題權(quán)機會均等,并且勢均力敵,第一個提示后答對概率均為;第二個提示后答對概率均為,為甲隊在一局比賽中的分.

(1)求甲在一局比賽中得分的分布列;

(2)若比賽共4局,求甲4局比賽中至少得6分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若時,討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間上恰有2個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻.為調(diào)查中學(xué)生對這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調(diào)查結(jié)果如下:

0項

1項

2項

3項

4項

5項

5項以上

理科生(人)

1

10

17

14

14

10

4

文科生(人)

0

8

10

6

3

2

1

(1)完成如下列聯(lián)表,并判斷是否有的把握認為,了解阿基米德與選擇文理科有關(guān)?

比較了解

不太了解

合計

理科生

文科生

合計

(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

(i)求抽取的文科生和理科生的人數(shù);

(ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,.

查看答案和解析>>

同步練習(xí)冊答案