【題目】已知函數(shù)

(1)求的定義域;

(2)判斷的奇偶性并給予證明;

(3)求關(guān)于x的不等式的解集.

【答案】(1);(2)詳見解析;(3)詳見解析.

【解析】

(1)根據(jù)題意,由函數(shù)的分析式分析可得,解可得x的取值范圍,即可得答案;

(2)根據(jù)題意,由函數(shù)的分析式分析可得,結(jié)合函數(shù)的奇偶性的定義分析可得結(jié)論;

(3)根據(jù)題意,分兩種情況討論,求出不等式的解集,綜合即可得答案.

解:(1)根據(jù)題意,函數(shù),

則有,解可得,

即函數(shù)的定義域為;

(2)首先,定義域關(guān)于原點對稱,函數(shù)

則函數(shù)為奇函數(shù),

(3)根據(jù)題意,,

當(dāng)時,有,解可得,此時不等式的解集為;

當(dāng)時,有,解可得,此時不等式的解集為;

故當(dāng)時,不等式的解集為

當(dāng)時,不等式的解集為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(為常數(shù)).

(1)當(dāng)時,判斷的單調(diào)性,并用定義證明;

(2)若對任意,不等式恒成立,求的取值范圍;

(3)討論零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于直線對稱,且圓心在軸上.

(1)求的標(biāo)準(zhǔn)方程;

(2)已經(jīng)動點在直線上,過點的兩條切線、,切點分別為.

①記四邊形的面積為,求的最小值;

②證明直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知四邊形BCDE為直角梯形,,,且,ABE的中點沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐

求證;

平面ABCD

求二面角的大;

在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,內(nèi)角的平分線的長為7,且,則 _____;的長是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近13年的宣傳費(fèi)和年銷售量 數(shù)據(jù)作了初步處理,得到散點圖及一些統(tǒng)計量的值.

由散點圖知,按建立關(guān)于的回歸方程是合理的.令,則,經(jīng)計算得如下數(shù)據(jù):

10.15

109.94

0.16

-2.10

0.21

21.22

最小二乘法求線性回歸方程系數(shù)公式

Ⅰ)根據(jù)以上信息,建立關(guān)于的回歸方程;

Ⅱ)已知這種產(chǎn)品的年利潤的關(guān)系為.根據(jù)(1)的結(jié)果,求當(dāng)年宣傳費(fèi)時,年利潤的預(yù)報值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點A在y軸正半軸上,點Pn在x軸上,其橫坐標(biāo)為xn , 且{xn} 是首項為1、公比為2的等比數(shù)列,記∠PnAPn+1n , n∈N*

(1)若 ,求點A的坐標(biāo);
(2)若點A的坐標(biāo)為(0,8 ),求θn的最大值及相應(yīng)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間[﹣3,3]上隨機(jī)取一個數(shù)x使得|x+1|﹣|x﹣2|≥1的概率為

查看答案和解析>>

同步練習(xí)冊答案