【題目】如圖,在三棱柱中,每個側(cè)面均為正方形,D為底邊AB的中點,E為側(cè)棱的中點.
(1)求證:平面;
(2)求證:平面;
(3)若,求三棱錐的體積.
【答案】(1)見解析
(2)見解析
(3)
【解析】
(1)設和的交點為,根據(jù),且,得到四邊形為平行四邊形,故,平面.
(2)證明平面,可得平面,故有,由正方形的兩對角線的性質(zhì)可得,
從而證得平面.
(3)利用等體積法將轉(zhuǎn)化為求可得.
證明:(1)設和的交點為O,連接EO,連接OD.
因為O為的中點,D為AB的中點,
所以且.又E是中點,
所以,且,
所以且.
所以,四邊形ECOD為平行四邊形.所以.
又平面,平面,則平面.
(2)因為三棱柱各側(cè)面都是正方形,所以,.
所以平面ABC.因為平面ABC,所以.
由已知得,所以,
所以平面.由(1)可知,所以平面.
所以.因為側(cè)面是正方形,所以.
又,平面,平面,
所以平面.
(3)解:由條件求得,,可以求得
所以
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當a∈R時,討論函數(shù)f(x)的單調(diào)性;
(2)對任意的x∈(1,+∞)均有f(x)<ax,若a∈Z,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左,右焦點分別為,,點在橢圓上.
(1)求橢圓的標準方程;
(2)是否存在斜率為的直線與橢圓相交于,兩點,使得?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是,接下來的兩項是,,再接下來的三項是,,,依此類推,若該數(shù)列前項和滿足:①②是2的整數(shù)次冪,則滿足條件的最小的為
A. 21B. 91C. 95D. 10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)≤0恒成立,求ea(b﹣1)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位共有老年人120人,中年人360人,青年人n人,為調(diào)查身體健康狀況,需要從中抽取一個容量為m的樣本,用分層抽樣的方法進行抽樣調(diào)查,樣本中的中年人為6人,則n和m的值不可以是下列四個選項中的哪組( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的一個頂點與拋物線的焦點重合,、分別是橢圓的左、右焦點,其離心率橢圓右焦點的直線與橢圓交于、兩點.
(1)求橢圓的方程;
(2)是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某景區(qū)的各景點從2009年取消門票實行免費開放后,旅游的人數(shù)不斷地增加,不僅帶動了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結(jié)構(gòu),促進了該市旅游向“觀光、休閑、會展”三輪驅(qū)動的理想結(jié)構(gòu)快速轉(zhuǎn)變.下表是從2009年至2018年,該景點的旅游人數(shù)(萬人)與年份的數(shù)據(jù):
第年 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人數(shù)(萬人) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
該景點為了預測2021年的旅游人數(shù),建立了與的兩個回歸模型:
模型①:由最小二乘法公式求得與的線性回歸方程;
模型②:由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近.
(1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程.(精確到個位,精確到0.01).
(2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關指數(shù),并選擇擬合精度更高、更可靠的模型,預測2021年該景區(qū)的旅游人數(shù)(單位:萬人,精確到個位).
回歸方程 | ① | ② |
30407 | 14607 |
參考公式、參考數(shù)據(jù)及說明:
①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為.②刻畫回歸效果的相關指數(shù);③參考數(shù)據(jù):,.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com