【題目】我國(guó)古代數(shù)學(xué)名著《數(shù)書九章》中有天池盆測(cè)雨題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水,天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸,若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸)(

A.2B.3C.4D.5

【答案】B

【解析】

由題意,可知圓臺(tái)形天池盆上底面半徑為14寸,下底面半徑為6寸,高為18.利用圓臺(tái)的體積公式求得盆中積水的體積,進(jìn)而求得平地降雨量.

由題意,可知圓臺(tái)形天池盆上底面半徑為14寸,下底面半徑為6寸,高為18.因?yàn)榉e水深9寸,所以水面半徑為(寸),則盆中積水的體積為(立方寸),又盆口面積為(平分寸),所以平地降雨量為(寸).

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若函數(shù)上是增函數(shù),求正數(shù)的取值范圍;

(2)當(dāng)時(shí),設(shè)函數(shù)的圖象與x軸的交點(diǎn)為,,曲線兩點(diǎn)處的切線斜率分別為,,求證:+ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】軍訓(xùn)時(shí),甲、乙兩名同學(xué)進(jìn)行射擊比賽,共比賽10場(chǎng),每場(chǎng)比賽各射擊四次,且用每場(chǎng)擊中環(huán)數(shù)之和作為該場(chǎng)比賽的成績(jī).?dāng)?shù)學(xué)老師將甲、乙兩名同學(xué)的10場(chǎng)比賽成績(jī)繪成如圖所示的莖葉圖,并給出下列4個(gè)結(jié)論:(1)甲的平均成績(jī)比乙的平均成績(jī)高;(2)甲的成績(jī)的極差是29;(3)乙的成績(jī)的眾數(shù)是21;(4)乙的成績(jī)的中位數(shù)是18.則這4個(gè)結(jié)論中,正確結(jié)論的個(gè)數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一顆骰子投擲2次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為,第二次出現(xiàn)的點(diǎn)數(shù)為,試就方程組解答下列各題:

1)求方程組只有一個(gè)解的概率;

2)求方程組只有正數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一年級(jí)模仿《中國(guó)詩(shī)詞大會(huì)》節(jié)目舉辦學(xué)校詩(shī)詞大會(huì),進(jìn)入正賽的條件為:電腦隨機(jī)抽取10首古詩(shī),參賽者能夠正確背誦6首及以上的進(jìn)入正賽,若學(xué)生甲參賽,他背誦每一首古詩(shī)的正確的概率均為

(1)求甲進(jìn)入正賽的概率;

(2)若進(jìn)入正賽,則采用積分淘汰制,規(guī)則是:電腦隨機(jī)抽取4首古詩(shī),每首古詩(shī)背誦正確加2分,錯(cuò)誤減1.由于難度增加,甲背誦每首古詩(shī)正確的概率為,求甲在正賽中積分的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱臺(tái)中,分別是的中點(diǎn).

1)求證:平面平面;

2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十七世紀(jì)法國(guó)數(shù)學(xué)家費(fèi)馬提出猜想:“當(dāng)整數(shù)時(shí),關(guān)于的方程沒(méi)有正整數(shù)解”.經(jīng)歷三百多年,于二十世紀(jì)九十年中期由英國(guó)數(shù)學(xué)家安德魯懷爾斯證明了費(fèi)馬猜想,使它終成費(fèi)馬大定理,則下面說(shuō)法正確的是( )

A. 存在至少一組正整數(shù)組使方程有解

B. 關(guān)于的方程有正有理數(shù)解

C. 關(guān)于的方程沒(méi)有正有理數(shù)解

D. 當(dāng)整數(shù)時(shí),關(guān)于的方程沒(méi)有正實(shí)數(shù)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,底面,且,,分別是、的中點(diǎn).

(1)求證:平面平面;

(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】、均為正整數(shù),且,為一素?cái)?shù),、進(jìn)制表示分別為,其中,.證明:

(1)若,且對(duì)整數(shù) 均有,則,其中,表示不超過(guò)實(shí)數(shù)的最大整數(shù).

(2) ,其中,表示集合A中元素的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案