精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析

【解析】

(Ⅰ)轉化為證明;(Ⅱ)轉化為證明,;(Ⅲ)根據線面平行的性質定理.

(Ⅰ)因為四邊形為正方形,所以,由于平面

平面,所以平面.

(Ⅱ)因為四邊形為正方形,

所以.平面平面

平面平面,

所以平面.所以.

中點,連接.,,

可得四邊形為正方形.

所以.所以.所以.

因為,所以平面.

(Ⅲ)存在,當的中點時,平面,此時.

證明如下:

連接于點,由于四邊形為正方形,

所以的中點,同時也是的中點.

因為,又四邊形為正方形,

所以

連接,所以四邊形為平行四邊形.

所以.又因為平面平面,

所以平面.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】給出下列四個命題:①命題“若,則”的逆否命題為假命題:

②命題“若,則”的否命題是“若,則”;

③若“”為真命題,“”為假命題,則為真命題,為假命題;

④函數有極值的充要條件是 .

其中正確的個數有( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校學生參加了“鉛球”和“立定跳遠”兩個科目的體能測試,每個科目的成績分為,,,,五個等級,分別對應5分,4分,3分,2分,1分,該校某班學生兩科目測試成績的數據統(tǒng)計如圖所示,其中“鉛球”科目的成績?yōu)?/span>的學生有8人.

(Ⅰ)求該班學生中“立定跳遠”科目中成績?yōu)?/span>的人數;

(Ⅱ)若該班共有10人的兩科成績得分之和大于7分,其中有2人10分,3人9分,5人8分.從這10人中隨機抽取兩人,求兩人成績之和的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程為為參數),直線與曲線交于,兩點.

(Ⅰ)求的長;

(Ⅱ)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數軸于兩點(不重合),交軸于. 三點.下列說法正確的是( )

圓心在直線上;

的取值范圍是

半徑的最小值為;

存在定點,使得圓恒過點.

A. ①②③B. ①③④C. ②③D. ①④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在軸上,短軸長為,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點.

(1)求橢圓的方程;

(2)設過右焦點軸不垂直的直線與橢圓交于、兩點.在線段上是否存在點,使得以、為鄰邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,

請說明理由;

(3)設點在橢圓上運動,,且點到直線的距離等于,試求動點的軌

跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】xOy平面上,將雙曲線的一支 及其漸近線和直線圍成的封閉圖形記為D,如圖中陰影部分,記Dy軸旋轉一周所得的幾何體為, 的水平截面,計算截面面積,利用祖暅原理得出體積為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果對于函數f(x)定義域內任意的兩個自變量的值x1 , x2 , 當x1<x2時,都有f(x1)≤f(x2),且存在兩個不相等的自變量值y1 , y2 , 使得f(y1)=f(y2),就稱f(x)為定義域上的不嚴格的增函數.
則 ① , ②
, ④ ,
四個函數中為不嚴格增函數的是 ,若已知函數g(x)的定義域、值域分別為A、B,A={1,2,3},BA,且g(x)為定義域A上的不嚴格的增函數,那么這樣的g(x)有 個.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點P1(a1 , b1),P2(a2 , b2),…,Pn(an , bn)(n∈N*)都在函數y=的圖象上.
(Ⅰ)若數列{bn}是等差數列,求證數列{an}為等比數列;
(Ⅱ)若數列{an}的前n項和為Sn=1﹣2﹣n , 過點Pn , Pn+1的直線與兩坐標軸所圍成三角形面積為cn , 求使cn≤t對n∈N*恒成立的實數t的取值范圍.

查看答案和解析>>

同步練習冊答案