(本題滿分10分)已知m>1,直線,橢圓,分別為橢圓的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓交于兩點,,的重心分別為.若原點在以線段為直徑的圓內(nèi),求實數(shù)的取值范圍.

(Ⅰ)
(Ⅱ)
(Ⅰ)解:因為直線經(jīng)過,

所以,得
又因為,所以,故直線的方程為。
(Ⅱ)解:設

第20題

 
     由,消去


則由,知,
且有。由于,故的中點,
,可知
的中點,則,由題意可知




所以

又因為
所以。
所以的取值范圍是。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知橢圓C的焦點為,長軸長為6,
(1)求橢圓C的標準方程;
(2)已知過點且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)
若F是橢圓的左焦點,A(-a,0), B(0,b), 橢圓的離心率為, 點D在x軸上,B,D,F三點確定的圓M恰好與直線l1:x+y+30相切
(1)求橢圓的方程
(2)過點A的直線l2與圓M交于P,Q兩點,且,求直線l2的方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸的一個端點到右焦點的距離為,直線交橢圓于不同的兩點,
(Ⅰ)求橢圓的方程
(Ⅱ)若坐標原點到直線的距離為,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知橢圓C:,兩個焦點分別為、,斜率為k的直線過右焦點且與橢圓交于A、B兩點,設與y軸交點為P,線段的中點恰為B。
(1)若,求橢圓C的離心率的取值范圍。
(2)若,A、B到右準線距離之和為,求橢圓C的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的中心在原點,為橢圓的左焦點, 為橢圓的一個頂點,過點作與垂直的直線軸于點, 且橢圓的長半軸長和短半軸長是關于的方程(其中為半焦距)的兩個根.
(1)求橢圓的離心率;
(2)經(jīng)過、三點的圓與直線
相切,試求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、是橢圓的兩個焦點,為橢圓上一點,且∠,則Δ的面積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)設、分別是橢圓的左、右焦點,過且斜率為的直線相交于、兩點,且、、成等差數(shù)列.
(1)若,求的值;
(2)若,設點滿足,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設橢圓的右焦點為F,C為橢圓短軸的端點,向量繞F點順時針旋轉后得到向量,其中點恰好落在直線上,則該橢圓的離心率為__________________________

查看答案和解析>>

同步練習冊答案