【題目】下列命題正確是 , (寫出所有正確命題的序號(hào))
①若奇函數(shù)f(x)的周期為4,則函數(shù)f(x)的圖象關(guān)于(2,0)對(duì)稱;
②若a∈(0,1),則a1+a<a ;
③函數(shù)f(x)=ln 是奇函數(shù);
④存在唯一的實(shí)數(shù)a使f(x)=lg(ax+ )為奇函數(shù).
【答案】①③
【解析】解:對(duì)于①,若奇函數(shù)f(x)的周期為4,則f(﹣x)=f(﹣x+4)=﹣f(x),則函數(shù)f(x)的圖象關(guān)于(2,0)對(duì)稱,故正確;
對(duì)于②,若a∈(0,1),1+a<1+ 則a1+a>a ,故錯(cuò);
對(duì)于③,函數(shù)f(x)=ln 滿足f(x)+f(﹣x)=0,且定義域?yàn)椋ī?,1),f(x)是奇函數(shù),正確;
對(duì)于④,f(x)=lg(ax+ )為奇函數(shù)時(shí),(ax+ )(ax+ )=1a=±1,故錯(cuò).
所以答案是:①③
【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A,B兩點(diǎn),M是線段AB的中點(diǎn),過M作x軸的垂線C于點(diǎn)N.
(1)證明:拋物線C在點(diǎn)N處的切線與AB平行;
(2)是否存在實(shí)數(shù)k使以AB為直徑的圓M經(jīng)過點(diǎn)N,若存在,求k的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,D為AA1的中點(diǎn),E為BC的中點(diǎn).
(1)求證:直線AE∥平面BDC1;
(2)若三棱柱 ABC﹣A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1與平面ABC所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是奇函數(shù),且滿足f(2﹣x)=f(x)(x∈R),當(dāng)0<x≤1時(shí),f(x)=lnx+2,則函數(shù)y=f(x)在(﹣2,4]上的零點(diǎn)個(gè)數(shù)是( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 的焦點(diǎn)F1與橢圓 的一個(gè)焦點(diǎn)重合,Γ的準(zhǔn)線與x軸的交點(diǎn)為F1 , 若Γ與C的交點(diǎn)為A,B,且點(diǎn)A到點(diǎn)F1 , F2的距離之和為4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若不過原點(diǎn)且斜率存在的直線l交橢圓C于點(diǎn)G,H,且△OGH的面積為1,線段GH的中點(diǎn)為P.在x軸上是否存在關(guān)于原點(diǎn)對(duì)稱的兩個(gè)定點(diǎn)M,N,使得直線PM,PN的斜率之積為定值?若存在,求出兩定點(diǎn)M,N的坐標(biāo)和定值的大;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+lnx,其中a為常數(shù),設(shè)e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=﹣1時(shí),求f(x)的最大值;
(2)若f(x)在區(qū)間(0,e]上的最大值為﹣3,求a的值;
(3)設(shè)g(x)=xf(x),若a>0,對(duì)于任意的兩個(gè)正實(shí)數(shù)x1 , x2(x1≠x2),證明:2g( )<g(x1)+g(x2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x),當(dāng)x∈[0,2]時(shí),f(x)=4(1﹣|x﹣1|),且對(duì)于任意實(shí)數(shù)x∈[2n﹣2,2n+1﹣2](n∈N* , n≥2),都有f(x)= f( ﹣1).若g(x)=f(x)﹣logax有且只有三個(gè)零點(diǎn),則a的取值范圍是( )
A.[2,10]
B.[ , ]
C.(2,10)
D.[2,10)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知長(zhǎng)方體ABCD中, 為DC的中點(diǎn).將△ADM沿AM折起,使得AD⊥BM.
(1)求證:平面ADM⊥平面ABCM;
(2)是否存在滿足 的點(diǎn)E,使得二面角E﹣AM﹣D為大小為 .若存在,求出相應(yīng)的實(shí)數(shù)t;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為2 ,求c.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com