【題目】如圖,三棱柱ABC﹣A1B1C1中,D為AA1的中點(diǎn),E為BC的中點(diǎn).
(1)求證:直線AE∥平面BDC1;
(2)若三棱柱 ABC﹣A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1與平面ABC所成二面角的正弦值.

【答案】
(1)證明:設(shè)BC1的中點(diǎn)為F,連接EF,DF.

則EF是△BCC1中位線,根據(jù)已知得EF∥DA,且 EF=DA.

∴四邊形ADFE是平行四邊形∴AE∥DF,

∵DF平面BDC1,AE平面BDC1,

∴直線AE∥平面BDC1


(2)解:建立如圖所示的空間直角坐標(biāo)系B﹣xyz,

由已知得 .∴

設(shè)平面BDC1的一個(gè)法向量為 ,

.∴ ,

取z=﹣1,解得

是平面BDC1的一個(gè)法向量.

由已知易得 是平面ABC的一個(gè)法向量.

設(shè)平面BDC1和平面ABC所成二面角的大小為θ,

.∵0<θ<π,∴

∴平面BDC1和平面ABC所成二面角的正弦值為


【解析】(1)設(shè)BC1的中點(diǎn)為F,連接EF,DF.得到EF是△BCC1中位線,說明EF∥DA,ADFE是平行四邊形,推出AE∥DF,即可證明直線AE∥平面BDC1 . (2)建立如圖所示的空間直角坐標(biāo)系B﹣xyz,求出相關(guān)點(diǎn)的坐標(biāo),求出平面BDC1的一個(gè)法向量,平面ABC的一個(gè)法向量.設(shè)平面BDC1和平面ABC所成二面角的大小為θ,通過向量的數(shù)量積求解平面BDC1和平面ABC所成二面角的正弦值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=cos(2x+ )的圖象沿x軸向右平移φ(φ>0)個(gè)單位,得到一個(gè)偶函數(shù)的圖象,則φ的一個(gè)可能取值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC= AD=1,CD=
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C為30°,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正四棱錐P﹣ABCD中,PA=AB=2,點(diǎn)M,N分別在PA,BD上,且 =
(1)求異面直線MN與PC所成角的大;
(2)求二面角N﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足:f(x)= ,且f(x+2)=f(x),g(x)= ,則方程f(x)=g(x)在區(qū)間[﹣7,3]上的所有實(shí)數(shù)根之和為(
A.﹣9
B.﹣10
C.﹣11
D.﹣12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,若輸入k的值為3,則輸出S的值為(
A.10
B.15
C.18
D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知右焦點(diǎn)為F2(c,0)的橢圓C: + =1(a>b>0)過點(diǎn)(1, ),且橢圓C關(guān)于直線x=c對(duì)稱的圖形過坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過點(diǎn)( ,0)作直線l與橢圓C交于E,F(xiàn)兩點(diǎn),線段EF的中點(diǎn)為M,點(diǎn)A是橢圓C的右頂點(diǎn),求直線MA的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確是 , (寫出所有正確命題的序號(hào))
①若奇函數(shù)f(x)的周期為4,則函數(shù)f(x)的圖象關(guān)于(2,0)對(duì)稱;
②若a∈(0,1),則a1+a<a
③函數(shù)f(x)=ln 是奇函數(shù);
④存在唯一的實(shí)數(shù)a使f(x)=lg(ax+ )為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論,現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績(jī),如表:

成績(jī)/編號(hào)

1

2

3

4

5

物理(x)

90

85

74

68

63

數(shù)學(xué)(y)

130

125

110

95

90

(參考公式: = , =
參考數(shù)據(jù):902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求數(shù)學(xué)成績(jī)y關(guān)于物理成績(jī)x的線性回歸方程 = x+ 精確到0.1),若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);
(2)要從抽取的這五位學(xué)生中隨機(jī)選出三位參加一項(xiàng)知識(shí)競(jìng)賽,以X表示選中的學(xué)生的數(shù)學(xué)成績(jī)高于100分的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案