22.已知a>0,函數(shù)fx)=axbx2.

  (Ⅰ)當b>0時,若對任意xR都有fx)≤1,證明a≤2;

  (Ⅱ)當b>1時,證明:對任意x∈[0,1],|fx)|≤1的充要條件是b-1≤a≤2;

  (Ⅲ)當0<b≤1時,討論:對任意x∈[0,1],|fx)|≤1的充要條件.

22.

(Ⅰ)證明:依設,對任意xR,都有fx)≤1,

fx)=-bx2+,

f)=≤1,

a>0,b>0,∴a≤2.  

 

(Ⅱ)證明:必要性

對任意x∈[0,1],|fx)|≤1-1≤fx),據(jù)此可以推出-1≤f(1),

ab≥-1,∴ab-1;

對任意x∈[0,1],|fx)|≤1fx)≤1,因為b>1,可以推出f)≤1,

a·-1≤1,

a≤2;

b-1≤a≤2.                              

充分性

因為b>1,a≥b-1,對任意x∈[0,1],可以推出axbx2bxx2)-x≥-x≥-1,

axbx2≥-1;

因為b>1,a≤2,對任意x∈[0,1],可以推出axbx2≤2xbx2≤1,

axbx2≤1.

∴-1≤fx)≤1.

綜上,當b>1時,對任意x∈[0,1],|fx)|≤1的充要條件是b-1≤a≤2.          

 

(Ⅲ)解:因為a>0,0<b≤1時,對任意x∈[0,1]

fx)=axbx2≥-b≥-1,即fx)≥-1;

fx)≤1f(1)≤1ab≤1,即ab+1,

ab+1fx)≤(b+1)xbx2≤1,即fx)≤1.

所以,當a>0,0<b≤1時,對任意x∈[0,1],|fx)|≤1的充要條件是ab+1.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關于x的方程2ax+b=0,則下列選項的命題中為假命題的是( 。
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)求函數(shù)f(x)的單調區(qū)間;(2)設曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)設曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
(2)求函數(shù)f(x)的單調區(qū)間;
(3)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
(Ⅰ)當a=
1
8

①求f(x)的單調區(qū)間;
②證明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=
|x-2a|
x+2a
在區(qū)間[1,4]上的最大值等于
1
2
,則a的值為
 

查看答案和解析>>

同步練習冊答案